— Chapter 5

Monte Carlo Methods

@ BUSTImBSEE (%) | 90

Algorithms/Methods

Chapter 5: Chapter 6:
Stochastic

Approximation

Chapter 4: .
. with model
Value Iteration & to Monte Carlo

Policy Iteration ithoutinodel Methods

Chapter 7:
.) Temporal-Difference
Chapter 3:
B Chapter 2: Methods
Bellman Equation

Bellman Optimality
Equation

tabular representation

function rfepresentation

Chapter 1:
Basic Concepts
Chapter 8:
Value Function
Approximation

Fundamental tools

Chapter 10:
Actor-Critic
Methods

Chapter 9:
Policy Gradient
Methods

policy-based
plus
value-based

Figure 5.1 Where we are in this book.

In the previous chapter, we introduced algorithms that can find optimal policies based on
the system model. In this chapter, we start introducing model-free reinforcement learning
algorithms that do not presume system models.

While this is the first time we introduce model-free algorithms in this book, we must
fill a knowledge gap: how can we find optimal policies without models? The philosophy is
simple: If we do not have a model, we must have some data. If we do not have data, we must
have a model. If we have neither, then we are not able to find optimal policies. The concept
“data” in reinforcement learning usually refers to the agent’s interaction experiences with
the environment.

To demonstrate how to learn from data rather than model, we start this chapter by
introducing the mean estimation problem, where the expected value of a random variable
is estimated from some samples. Understanding this problem is crucial for understanding
the fundamental idea of learning from data.

91 ‘ Chapter 5
Monte Carlo Methods

Then, we introduce three algorithms based on Monte Carlo (MC) methods. These
algorithms can learn optimal policies from experience samples. The first and simplest
algorithm is called MC Basic, which can be readily obtained by modifying the policy
iteration algorithm introduced in the last chapter. Understanding this algorithm is
important for grasping the fundamental idea of MC-based reinforcement learning. By
extending this algorithm, we further introduce another two algorithms that are more

complicated but more efficient.

5.1 Motivating example: Mean estimation

We next introduce the mean estimation problem to demonstrate how to learn from data
rather than model. We will see that mean estimation can be achieved based on Monte
Carlo methods, which refer to a broad class of techniques that use stochastic samples to
solve estimation problems. Readers may wonder why we care about the mean estimation
problem. It is simply because state and action values are both defined as the means of
returns. Estimating a state or action value is actually a mean estimation problem.

Consider a random variable X that can take values from a finite set of real numbers
denoted as X. Suppose that our task is to calculate the mean or expected value of X:
E[X]. The following two approaches can be used to calculate E[X].

o The first approach is model-based. Here, the model refers to the probability distribution
of X. If the model is known, then the mean can be directly calculated based on the
definition of the expected value:

E[X] = Y pla)s.

TEX
In this book, we use the terms expected value, mean, and average interchangeably.

o The second approach is model-free. When the probability distribution (i.e., the model)
of X is unknown, suppose that we have some samples {x1, 2, - ,z,} of X. Then, the
mean can be approximated as

E[X]~ 1=

ZL‘j.

1

1 n
n iz
When n is small, this approximation may not be accurate. However, as n increases, the
approximation becomes increasingly accurate. When n — oo, we have z — E[X]. The
law of large numbers guarantees this: the average of a large number of samples is close
to the expected value. The law of large numbers is introduced in Box 5.1.

,_:® SBILSTIMNSEE (M) | 92

The following example illustrates the two approaches described above. Consider a coin-
flipping game. Let random variable X denote which side is showing when the coin lands.
X has two possible values: X = 1 when the head is indicating, and X = —1 when the tail
is showing. Suppose that the true probability distribution (i.e., the model) of X is

p(X =1)=0.5, p(X =-1)=0.5.

If the probability distribution is known in advance, we can directly calculate the

mean as

E[X]=05-1+05-(—1)=0.

If the probability distribution is unknown, we can flip the coin many times and record
the sampling results {z;}?_ ;. By calculating the average of the samples, we can obtain an
estimate of the mean. As shown in Figure 5.2, the estimated mean becomes increasingly

accurate as the number of samples increases.

O samples
average

-1 D D - @DIHEGD KD DD GDOO OCOGIOCOHDAID CRIEN)

0 50 100 150 200
Sample index

Figure 5.2 An example for demonstrating the law of large numbers. Here, the samples are drawn
from {+1,—1} following a uniform distribution. The average of the samples gradually converges

to zero, which is the true expected value, as the number of samples increases.

It is worth mentioning that the samples used for mean estimation must be independent
and identically distributed (i.i.d. or iid). Otherwise, if the sampling values correlate,
estimating the expected value correctly may be impossible. An extreme case is that all
the sampling values are the same as the first one, whatever the first one is. In this case, the
average of the samples is always equal to the first sample, no matter how many samples we

use.

Chapter 5

93 Monte Carlo Methods

Box 5.1: Law of large numbers

Suppose that {z;}?, are some i.i.d. samples for a random variable X. Let 7 = + =iy T
be the average of the samples. Then,

E[z] = E[X],
var[z| = ivar[X .

The two equations above indicate that z is an unbiased estimate of E[X], and its
variance decreases to zero as n increases to infinity.

The proof is given below.

First, E[z] = E{Z?Zl z;/ n} =", E[z;]/n = E[X], where the last equability is due
to the fact that the samples are identically distributed (i.e., Ex;] = E[X]).

Second, var(z) = V&I‘{E?zl xl/n} = 2" var[z;]/n? = (n - var[X])/n? = var[X]/n,
where the second equality is due to the fact that the samples are independent, and the
third equability is a result of the samples being identically distributed (i.e., var[x;] =
var[X]).

5.2 MC Basic: The simplest MC-based algorithm

This section introduces the first and the simplest MC-based reinforcement learning
algorithm. This algorithm is obtained by replacing the model-based policy evaluation step
in the policy iteration algorithm introduced in Section 4.2 with a model-free MC' estimation

step.
5.2.1 Converting policy iteration to be model-free

There are two steps in every iteration of the policy iteration algorithm (see Section 4.2).
The first step is policy evaluation, which aims to compute v,, by solving v., = rx, +7Fx, Vx, .
The second step is policy improvement, which aims to compute the greedy policy mp11 =

arg max, (1, + 7P;vr,). The elementwise form of the policy improvement step is

Fina(5) = argmx S n(als) | plrls, r +9 2 p(sls v, ()

—argmaxz (als)qn,(s,a), seS.

@ B TIMRSEE (KXR) | 94

It must be noted that the action values lie at the core of these two steps. Specifically, in
the first step, the state values are calculated for the purpose of calculating the action values.
In the second step, the new policy is generated based on the calculated action values. Let
us reconsider how we can calculate the action values. There are two available approaches.

o The first approach is a model-based approach. This is the approach adopted by the
policy iteration algorithm. In particular, we can first calculate the state value v,, by

solving the Bellman equation. Then, we can calculate the action values by using

G, (s,) Zp rls, a?‘+72p s, a)vr, (s). (5.1)

This approach requires the system model {p(r|s,a), p(s'|s,a)} to be known.

¢ The second approach is a model-free approach. Recall that the definition of an action

value is
0r, (8,0) = E[G]S; = s, Ay = 4]
=E[Ri1 + YRy + VQRH?) +]St =5, A = al,

which is the expected return obtained when starting from (s,a). Since ¢, (s,a) is an
expectation, it can be estimated by MC methods as demonstrated in Section 5.1. To do
that, starting from (s, a), the agent can interact with the environment by following policy
7, and then obtain a certain number of episodes. Suppose that there are n episodes and
that the return of the ith episode is gfrig(s, a). Then, ¢, (s,a) can be approximated as

I, (8,a) = E[G]S; = s, Ay = q] Zg W (s, a) (5.2)

We already know that if the number of episodes n is sufficiently large, the approximation

will be sufficiently accurate according to the law of large numbers.

The fundamental idea of MC-based reinforcement learning is to use a model-free method
for estimating action values, as shown in (5.2), to replace the model-based method in the

policy iteration algorithm.

5.2.2 The MC Basic algorithm

We are now ready to present the first MC-based reinforcement learning algorithm. Starting
from an initial policy g, the kth iteration (kK = 0,1,2,---) of the algorithm contains two

steps.

Chapter 5

95 ‘ Monte Carlo Methods

o Step 1: Policy evaluation. This step is used to estimate g, (s,a) for all (s,a).
Specifically, for every (s, a), we collect sufficiently many episodes and use the average of

the returns, denoted as ¢x(s, a), to approximate ¢, (s, a).

o Step 2: Policy improvement. This step solves m11(s) = argmax, >, 7(a|s)qx(s, a) for
all s € S. The greedy optimal policy is mg11(ag|s) = 1 where a} = arg max, qx(s, a).

This is the simplest MC-based reinforcement learning algorithm, which is called MC
Basic in this book. The pseudocode of the MC Basic algorithm is given in Algorithm 5.1.
As can be seen, it is very similar to the policy iteration algorithm. The only difference is
that it calculates action values directly from experience samples, whereas policy iteration
calculates state values first and then calculates the action values based on the system
model. It should be noted that the model-free algorithm directly estimates action values.
Otherwise, if it estimates state values instead, we still need to calculate action values from

these state values using the system model, as shown in (5.1).

Algorithm 5.1: MC Basic (a model-free variant of policy iteration)

Initialization: The initial guess is 7.
Goal: Search for an optimal policy.

For the kth iteration (k =0,1,2,---), do
For every state s € S, do

For every action a € A(s), do
Collect sufficiently many episodes starting from (s, a) by following 7y
Policy evaluation:
0r.(S,a) = qx(s,a) = the average return of all the episodes starting from
(s,a)

Policy improvement:

ay(s) = argmax, qx(s,a)

Tre1(als) = 1if a = af, and 741 (a|s) = 0 otherwise

Since policy iteration is convergent, MC Basic is also convergent given sufficient samples.
For every (s, a), suppose that there are sufficiently many episodes starting from (s, a). Then,
the average of the returns of these episodes can accurately approximate the action value of
(s,a). In practice, we usually do not have sufficient episodes for every (s,a). As a result,
the approximation of the action values may not be accurate. Nevertheless, usually the
algorithm can still work. This is similar to the truncated policy iteration algorithm, where

the action values are neither accurately calculated.

@ WS IR (%32H) | 96

Finally, MC Basic is too simple to be practical due to its low sample efficiency. The
reason why we introduce this algorithm is to let readers grasp the core idea of MC-
based reinforcement learning. It is essential to understand this algorithm well before
studying more complex algorithms introduced later in this chapter. We will see that more
complex and sample-efficient algorithms can be readily obtained by extending the MC Basic
algorithm.

5.2.3 Illustrative examples

A simple example: A step-by-step implementation

We next use an example to demonstrate the implementation details of the MC Basic
algorithm. The reward settings are ryoundary = Tforbidden = —1 and Target = 1. The discount
rate is v = 0.9. The initial policy 7y is shown in Figure 5.3. This initial policy is not

optimal for s; or ss.

f
S1 So S3—
}
Sq—> S5 S6
} }
S7—> 58—

Figure 5.3 An example for illustrating the MC Basic algorithm.

While all the action values should be calculated, we merely present those of s; due
to space limitations. At s;, there are five possible actions. For each action, we need to
collect many episodes that are sufficiently long to approximate the action value effectively.
However, since this example is deterministic regarding the policy and model, running
multiple times would generate the same trajectory. As a result, the estimation of each
action value merely requires a single episode.

Following 7y, we can obtain the following episodes by respectively starting from (s1, aq),

(817a2), Tt (81705)-

o Starting from (s1,a4), the episode is s D51 2 51 2 ... The action value equals the
discounted return of the episode:

Gro(51,01) = =1 +9(=1) + ¥ (=1) + - = ——.

Chapter 5

o Starting from (s1, ay), the episode is s; “2s9 2% s5 -2 --.. The action value equals the

discounted return of the episode:

Gno (51, 82) = 04790+ 720+ 7°(1) + 7 (1) + - = = -
o Starting from (sy, a3), the episode is s; Bysy B s5 2 ... The action value equals the
discounted return of the episode:
3
Gy (51,03) = 0+ 70+ 770 +7°(1) +94 (1) + -+ = 7= v
o Starting from (s1, as), the episode is s; “%s; 25 s; % - .. The action value equals the
discounted return of the episode:
-1
Qm)(Sl;(M) =—-1+ '7(_1) +72(_1) + = ﬁ
o Starting from (sy, as), the episode is s; Lys1 25 sy 2 ... The action value equals the
discounted return of the episode:
dra(51,05) = 0 7(=1) 92 (=1) oo = g

By comparing the five action values, we see that

,YS

Qﬂ'o(sha’Q) - Q7T0<817a3> = 1 o ,y

are the maximum values. As a result, the new policy can be obtained as
m(azls1) =1 or m(asls;) =1.

It is intuitive that the improved policy, which takes either ay or az at s;, is optimal.
Therefore, we can successfully obtain an optimal policy by using merely one iteration for
this simple example. In this simple example, the initial policy is already optimal for all
the states except s; and s3. Therefore, the policy can become optimal after merely a single

iteration. When the policy is nonoptimal for other states, more iterations are needed.

A comprehensive example: Episode length and sparse rewards
We next discuss some interesting properties of the MC Basic algorithm by examining a
more comprehensive example. The example is a 5-by-5 grid world (Figure 5.4). The reward

settings are Thoundary = —1, Tforbidden = —10, and 7¢arget = 1. The discount rate is v = 0.9.

97 Monte Carlo Methods

@ BIFIIMBPEE (%XHR) | 98

Episode length=1
2 3 4

Episode length=1 Episode length=2 Episode length=2
2 3 4 2 3 4 2 3 4

(a) Final value and policy with episode length=1 (b) Final value and policy with episode length=2

Episode length=3 Episode length=4 Episode length=4
2 3 4 2 3 4 2 3 4

5 1

(c) Final value and policy with episode length=3 (d) Final value and policy with episode length=4

Episode length=14 Episode length=14 Episode length=15 Episode length=15
2 3 4 2 3 4 2 3 4 2 3 4

5 1

25 | 30

3.0 | 36

43

(f) Final value and policy with episode length=15

Episode length=100 Episode length=100
2 3 4 2 3 4

1

(g) Final value and policy with episode length=30 (h) Final value and policy with episode length=100

Figure 5.4 The policies and state values obtained by the MC Basic algorithm when given different
episode lengths. Only if the length of each episode is sufficiently long, can the state values be
accurately estimated.

