走进OceanBase数据库

🦀 情景导入

在数字化浪潮汹涌澎湃的时代背景下,海量数据的存储与高效处理逐渐成为企业发展 的关键。2010年, OceanBase 项目在阿里巴巴公司内部悄然启动,彼时的互联网行业正处 于高速扩张阶段,电商业务的数据量呈指数级增长。传统的关系数据库在面对阿里巴巴这 样超大规模的业务场景时,越发显得难以胜任。

研发人员从最基础的架构设计开始摸索,他们要构建一个能适应互联网动态多变的业 务需求的数据库系统。2013年, OceanBase 数据库首次在阿里巴巴内部的部分非关键业务 上线试点,这一阶段就像是蹒跚学步的孩童,虽然稚嫩,但迈出了关键的一步。研发团队日 夜监测系统运行状态,收集各类性能数据,不断对代码进行优化。

随后的几年,每年的"双11"购物狂欢节成为OceanBase数据库茁壮成长的绝佳试炼 场。"双11"期间,海量的商品信息查询、订单创建与支付等操作瞬间爆发,峰值流量高得惊 人。研发人员在这样的高压环境下,逐步打磨 OceanBase 分布式架构,解决了数据分片不 均、热点数据拥堵等诸多棘手问题。例如,为了应对订单支付高峰时段的高并发写入,团队 创新性地优化了数据写入流程,让事务处理效率大幅提升。

随着在阿里巴巴体系内的稳定性与性能得到充分验证,研发人员开始将目光投向外部 市场。2017年左右, OceanBase 逐步向金融行业敞开怀抱, 这无疑是一次极具挑战性的跨 界。金融领域对数据准确性、一致性和安全性有着严苛的要求, OceanBase 团队与金融机构 紧密合作,针对金融核心业务系统进行定制化适配,攻克了诸如同城双活、异地容灾等关键 技术难题。

近年来, OceanBase 数据库更是走向国际舞台, 参与全球数据库技术竞争。它持续选 代,吸引了全球范围内不同行业的关注,从电商巨头到金融新贵,从政务先锋到电信骨干, 众多企业开始引入 OceanBase 数据库,开启数字化转型新篇章。

职业能力目标(含素养要点)

了解 OceanBase 的核心特征	熟悉 OceanBase 的版本及其特性
了解 OceanBase 的使用限制	了解 OceanBase 的部署方式
了解 OceanBase 的应用场景	了解 OceanBase 的部署工具
了解 OceanBase 系统结构	激发学生的攻坚克难的创新精神

任务 1-1 认知 OceanBase 数据库

III 任务描述

本任务要求读者了解 OceanBase 数据库的发展历程及应用场景,并且完成阿里云平台的注册及登录。

図 知识解析

OceanBase 海扬数据库始创于 2010 年,已连续 10 余年稳定支撑"双 11" 电商购物活动,创新推出"三地五中心"城市级容灾新标准,是全球唯一在 TPC-C 和 TPC-H 测试上都刷新了世界纪录的原生分布式数据库。产品采用一体化架构,兼顾分布式架构的扩展性与集中式架构的性能优势,用一套引擎同时支持 TP 和 AP 的混合负载,具有数据强一致、高可用、高性能、在线扩展、高度兼容 Oracle/MySQL、对应用透明、高性价比等特点。14 年持续深耕海量核心场景,已助力金融、政务、运营商、零售、互联网等多行业客户实现关键业务系统升级。

1. 走向现代数据架构

1)全新数字经济时代驱动下的挑战与演进

随着移动互联网的发展, SaaS 层的应用架构率先开启从单体应用、服务化到云原生的演进。紧接着, IaaS 层的基础架构在基本不影响业务的同时, 向云化演进, 具备更优的算力等。这两层的演进, 正倒逼 PaaS 层的数据架构走向现代数据架构(见图 1-1)。

图 1-1 OceanBase 数据架构

- 2)现代数据架构的五大特征
- 可扩展性:面向海量数据,充分利用分布式高并发、可扩展性和高可用性能力。
- 实时分析: TP + AP, 确保数据一致性, 满足实时分析的需求。
- 多模融合:消除数据孤岛,简化技术栈。
- 开放灵活性: 架构开放, 灵活部署, 拥抱多基础设施, 满足跨云的需求。
- SQL+AI 融合: 通过 AI 优化、改写 SQL,提升开发和运行效率。

2. 认识 OceanBase

OceanBase 数据库随着阿里巴巴电商业务的发展孕育而生,随着蚂蚁集团移动支付业务的发展而壮大,经过十多年各类业务的使用和打磨终于破茧成蝶,推向了外部市场(见图 1-2)。

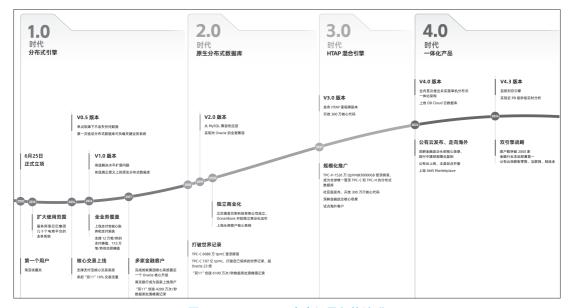


图 1-2 OceanBase 大事记及架构演进

3. OceanBase 关键竞争力

1) OceanBase 数据库整体架构

OceanBase 数据库采用无共享(Shared-nothing)分布式集群架构(见图 1-3),各个节点之间完全对等,每个节点都有自己的 SQL 引擎、存储引擎、事务引擎,运行在普通 PC 服务器组成的集群之上,具备高可扩展性、高可用性、高性能、低成本、与主流数据库高兼容等。

OceanBase 数据库使用通用服务器硬件,依赖本地存储,其分布式部署使用的多个服务器也是对等的,没有特殊的硬件要求。OceanBase 数据库的分布式数据库处理采用 Shared Nothing 架构,数据库内的 SQL 执行引擎具有分布式执行能力。

OceanBase 数据库的服务器上会运行一个名为 observer 的单进程程序作为数据库的运行实例,使用本地的文件存储数据和事务 Redo 日志。

OceanBase 集群的部署需要配置可用区(Zone),每个可用区由若干个服务器组成。可用区是一个逻辑概念,表示集群内具有相似硬件可用性的一组节点,它在不同的部署模式下代表不同的含义。例如,当整个集群部署在同一个机房(IDC)内时,一个可用区的节点

可以属于同一个机架,同一个交换机等。当集群分布在多个数据中心的时候,每个可用区可以对应于一个数据中心。

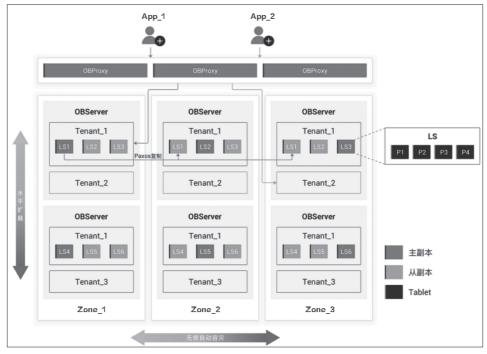


图 1-3 OceanBase 数据库整体架构

用户存储的数据在分布式集群内部可以存储多个副本,用于故障容灾,也可以用于分散读取压力。同一个租户在一个可用区内的数据只有一个副本,不同的可用区可以存储同一个数据的多个副本,副本之间由 Paxos 协议保证数据的一致性。

OceanBase 数据库内置多租户特性,每个租户相当于一个独立的数据库实例,一个租户能够在租户级别设置本租户的数据分布策略以及副本类型和副本数。各租户之间的 CPU、内存和 IO 等资源相互隔离。

OceanBase 集群的数据库实例内部由不同的组件相互协作,这些组件从底层向上由多租户层、存储层、复制层、均衡层、事务层、SQL层、接入层组成。

- 2) 六种关键竞争力
- (1)稳定可靠: OceanBase 一体化架构兼容经典模式,可从底层代码解决问题,做到核心系统升级的真正落地。同时提供身份鉴别和认证、访问控制、数据加密、监控告警、安全审计等多重企业级安全机制,全面为数据安全保驾护航。
- (2)弹性可扩展: OceanBase 使用普通服务器和数据中心网络组成的 Shared-nothing 集群部署,无须基于专用网络环境的 SAN 存储设备。集群原生自动管理计算资源和存储资源的分配和动态资源均衡。支持弹性水平或垂直扩缩容,读写性能可线性扩展。所有服务节点都支持 SQL 计算和数据存储,每个节点自主管理所服务的分区数据。整个集群只有一种数据库服务进程,无外部服务依赖,运维管理简单。对外提供统一的数据库服务,支持ACID 事务和全局索引,对应用开发来说与单机无异。

- (3)单机分布式灵活架构:单机分布式一体化架构支持单机与分布式之间灵活切换, 满足企业在各业务规模阶段的扩展需求。
- (4) Oracle/MySQL 平滑升级: 行业经过信息化变革,企业业务系统中大量应用程序和 解决方案基于传统数据库的能力设计,需要面向未来升级演进,分布式数据库是必然选择。 OceanBase 高度兼容 Oracle 和 MySQL,应用只需很小的改动,甚至无需改动即可完成迁 移,迁移全程支持系统在线且应用无感知,同时配套完善的迁移工具体系,全面降低系统升 级成本,带来平滑的迁移体验。
- (5) 极致高可用: OceanBase 采用原生分布式架构,原生分布式在设计之初就假定硬件 是不可靠的,每个模块的设计和实现都在细节处考虑容灾和主动防御,在内核能力层面保 障数据高可靠、服务高可用,在容灾部署方面支持三地五中心、两地三中心、多云容灾等异 地多活部署方案,提供7×24小时的业务连续性保障。
- (6)技术降本:高级压缩技术与原生多租户,在存储与管理层面提供全方位技术降本 能力,在不牺牲性能的基础上助力降本增效。OceanBase 在系统架构与功能特性等层面助 力用户实现双重技术降本。基于 LSM-Tree 存储架构和自适应压缩技术实现存储降本。基 于原生多租户架构提升资源利用率,最终实现管理降本。

由于节点间频繁通信协作,低带宽网络就像狭窄的胡同,严重阻碍数据传输,导致节点 同步延迟飙升。高延迟网络更是雪上加霜,让分布式事务的协调耗时剧增,数据库整体性 能大打折扣。从计算资源看,每个节点都需承担一定量的数据处理任务,薄弱的 CPU 算力 难以招架高频次的查询与复杂计算;存储方面,如果磁盘 I/O 速度跟不上数据读写需求,也 会形成性能瓶颈。这意味着企业部署 OceanBase 前,需投入资金购置高性能网络设备、强 劲的计算服务器与高速存储设备。

4. 产品体系

1) OceanBase 原生分布式数据库

OceanBase 为客户提供全场景、全形态的企业级数据库解决方案(见图 1-4)。产品体 系包括企业版、OB Cloud 云数据库、社区版,支持独立部署、云服务和数据库一体机等多种 部署交付形态。作为一体化数据库, OceanBase 具备完备的数据库工具体系,提供多工作负 载、多模和多租户等核心能力。通过一体化能力, OceanBase 能够满足 80% 的数据管理需 求,助力用户攻坚关键业务系统,简化技术栈,构建现代数据架构。

图 1-4 OceanBase 各版本数据库

2) 多工作负载一体化

OceanBase 通过一个数据库实现 TP 和 AP 的融合,支持行存、列存及行列混存,能够同时满足联机事务处理和实时分析工作负载的需求。消除复杂的 ETL 和冗余数据,并提供资源隔离能力,避免对关键业务的干扰和额外存储成本开销。配备可处理复杂 SQL 的企业级优化器,确保不同工作负载下始终保持卓越性能。传统方式与 OceanBase 的区别,如图 1-5 所示。

图 1-5 传统方式与 OceanBase 的区别

HTAP(混合事务与实时分析处理)是行业的迫切需求。OceanBase 基于原生分布式技术,能够在高效处理交易场景的同时,完成分析和批处理等分析性任务。通过一套引擎,OceanBase 同时支持 OLAP 和 OLTP 工作负载,实现了两套系统的功能,大幅降低了成本。OceanBase 认为,真正的 HTAP 要求首先具备高性能的 OLTP,然后在 OLTP 的基础上支持实时分析。OceanBase 通过原生分布式技术提供高性能的 OLTP 能力,真正实现"一个系统"同时处理交易与实时分析,通过"一份数据"服务于不同工作负载,从根本上确保数据一致性,最大程度地降低数据冗余,帮助企业显著降低总成本。

在混合负载场景中,确保不同负载之间的性能和资源管理至关重要。OceanBase 针对传统数据库在 TP 和 AP 负载下数据一致性挑战,提供多种资源隔离方式,包括使用多个 Zone 进行物理隔离和 CPU 资源组隔离,满足不同的资源需求(见图 1-6)。此外,系统还自动识别并隔离慢查询,确保整体交易响应时延不受影响,从而保障不同负载之间的稳定性和性能。

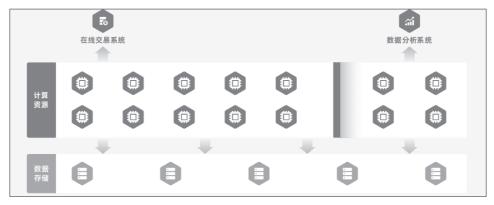


图 1-6 高负载下精细化资源隔离

3) 多模一体化

OceanBase 通过一个引擎原生支持多种数据访问模式,涵盖 SQL 和 NoSQL API,满足

多样化数据模型的需求, 简化数据架构。支持多种数据类型, 包括键值、JSON、GIS、XML、 全文索引和 SQL 查询,并提供 Table API,兼容 HBase 接口,确保在大规模数据存储和高性 能读写场景中,始终展现卓越的处理能力,如图 1-7 所示。

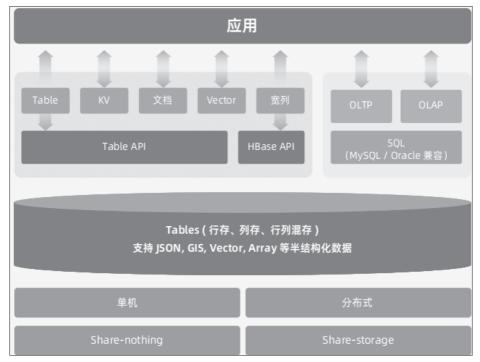


图 1-7 多模一体化

OceanBase 的多模能力允许用户通过一个数据库系统管理键值、JSON、GIS、XML、全 文索引和 SOL 查询等多种数据类型。这种灵活性满足多样化的数据模型需求,能够减少 维护多个数据库系统的复杂性和成本,简化数据架构,降低系统复杂性,提升开发和运维效 率,同时确保数据的一致性和安全性。

通过提供 Table API 兼容 HBase 接口, OceanBase 确保在大规模数据存储和高性能读 写场景中,用户能够实现高效的数据操作。

这种设计使得 OceanBase 在处理大数据场景时,能够保持卓越的性能,无论是在数据 的写入、查询还是分析方面,能够快速响应各种应用需求,提供强大的数据处理能力。

4)向量融合查询一体化

OceanBase 在一体化架构上实现 SOL + AI 结合, 支持向量检索与其他数据类型(如 GIS 数据、关系型数据、文档等)的混合查询(见图 1-8)。通过向量融合查询,企业可将 AI 能力与数据库系统无缝整合,简化技术栈,支持可扩展的复杂 AI 应用。

同时在关系型数据库基础上新增向量检索能力,支持向量数据类型、向量索引和基于 向量索引的搜索能力。用户可以通过 SQL 和 Python SDK 等方式灵活调用这些功能,结合 OceanBase 的分布式存储能力和对多模数据类型的支持, OceanBase 提供更丰富的融合查 询能力,简化AI应用技术栈,加速RAG、智能推荐和多模态搜索等场景落地。

OceanBase 向量检索能力整体架构		
用户访问层	SQL 多语言客户端 Python SDK	
多模数据层	基础类型 JSON GIS Vector HBase Redis	
检索层	融合查询 并行执行	
索引层	向量索引 全文索引 GIS 空间索引 多值索引 二级索引	
内核	事务 高可用 多分区水平扩展 高效存储 弹性扩缩容 读写分离	
工具体系	ODC OMS OAS OCP OMA 备份恢复	

图 1-8 OceanBase 向量检索架构

5. 行业方案及创新实践

OceanBase 被广泛应用于各行各业,可以总结为"十种场景解决方案""九种专有 云行业解决方案""四种专有云技术解决方案""五种 OB Cloud 典型应用场景及解决方 案""十四种生态联合解决方案",下面将分别介绍这些应用场景。

- 1)十种通用场景解决方案
- (1)全场景业务系统 OLTP 解决方案: 丰富的 SQL 语法特性、内建函数以及存储过程 支持,适用于各种在线交易尤其是核心系统场景的应用;数据存储压缩比70%以上,有效降 低企业存储成本。
- (2) 实时分析混合负载解决方案: 无共享 MPP 架构,可以实现在一套数据库引擎中 同时支撑在线交易和实时统计分析,并且提供很好的资源隔离机制。数据最大程度实现实 时,省去很多业务场景中实时数仓的构建工作,帮助客户实现业务价值。
- (3) 一站式传统数据库升级解决方案: 能够快速地帮助各企业进行数字化转型,既能确 保改造成本低、迁移无损、业务无缝切割,同时又能保证风险可控,适用企业未来的发展趋势。
- (4)新零售大促弹性解决方案:连续十年稳定支撑"双11"活动的极限峰值挑战,积累 的先进设计和创新方案,可以在超高并发的大促场景下提供极其稳定、顺滑的服务,并在行 业内众多真实场景得到充分验证。
- (5) 一库多芯软硬件混合部署解决方案: 通过 OceanBase 的多副本异构兼容能力, 支 持在相同集群中不同架构芯片、操作系统、物理机机型的混合部署和灰度上线,帮助企业平 滑迁移替换。
- (6) 异地多活解决方案: 最短 8s 内完成故障切换,同时保证零数据丢失。通过强大的 异地部署能力和多种灵活的容灾架构方案,帮助企业在各种关键核心场景中构建金融级多 地多活数据库架构。
- (7)混合云解决方案: 天然不依赖某种特定基础设施,可以在多种混合云场景下轻松 部署和投产。业务流量可以实现在云上/云下或者多朵云之间进行灵活的秒级切换,是企 业数据架构升级、提效的强力助推器
- (8)冷数据归档降本解决方案: 通过 OceanBase 智能化的历史库迁移平台,帮助用户 快速、安全地完成冷数据归档,一次配置即可自动管控,极大降低企业存储成本。

- (9) SaaS 多租户整合解决方案: 通过 OceanBase 的分布式多租户架构,实现基于面向 服务(SOA)的多数据库资源整合,在保证隔离性和可用性的同时实现资源池化,大幅提升 资源利用率以及管理效率,同时帮助 SaaS 企业降低整体成本。
- (10)数据中台解决方案: 集数据加工处理以及数据即时查询于一体的 OceanBase 原生 分布式 HTAP 据库解决方案,为数据中台建设提供强大引擎,帮助企业实现数据快速变现。
 - 2) 九种专有云行业解决方案
- (1) 国有大型银行和股份制银行核心系统解决方案: OceanBase 目前已覆盖全部政策 性银行、大部分国有大型银行,以及部分股份制商业银行,助力大型银行核心业务系统升级。
- (2) 区域性银行核心系统解决方案: OceanBase 针对区域性银行开启"百行计划",目 前进展迅速,资产规模千亿以上的区域性银行客户即将突破 100 家。
- (3) 寿险核心系统解决方案: OceanBase 已经在头部保险公司如中国人寿、中国太平 洋保险等核心业务系统大量使用,支撑寿险业务发展。
- (4)产险核心系统解决方案: OceanBase 目前已经在多家头部保险公司的产险核心业 务系统部署上线并稳定运行,支撑承保、理赔、支付等核心业务系统。
- (5) 资管交易类系统解决方案: 证券机构的集中交易系统,对外与沪、深两个交易所的 系统接口,对内则与其他各种系统建立接口,具有投资者开户、证券交易委托和成交、各种 维度的查询等功能。
- (6)资管 TA 清算类系统解决方案: TA 系统对数据库的综合要求较高,不仅要求高稳 定、高可靠,同时也要求高性能。
- (7)运营商核心系统解决方案: OceanBase 目前承载了中国移动公司全国三分之一省 份的核心系统,覆盖接近20个核心业务系统及300余个实例。与此同时覆盖中国联通、中 国电信翼支付等多套关键业务系统,为三大运营商提供强大支撑。
- (8)人社核心系统解决方案:人社行业的关键业务系统涉及社保卡、社保核心、劳动关 系、人事人才、就业管理等系统。OceanBase 目前已经覆盖全国四分之一的省份,在大部分 省份支撑最重要的社保卡核心以及社保核心系统并稳定运行,同时承载劳动关系、人事人 才、就业管理、大数据分析等业务系统。
- (9) 电力核心系统解决方案: OceanBase 目前已经在全国覆盖多家电力公司,支撑营 销、用电信息采集、配网信息等核心业务系统的运行。
 - 3)四种专有云技术解决方案
- (1)分布式数据库单机部署解决方案: OceanBase 4.x 创新推出单机分布式一体化架 构,可满足企业对关系型数据库不同需求,在同一套引擎下支持集中式和分布式架构。用 户可以根据业务对容灾能力、数据处理能力、项目阶段定制自己的数据库架构,实现一款数 据库产品伴随业务成长的全生命周期。
- (2) 软硬融合一体机解决方案: 随着企业数字化转型的深入, 传统的 IT 架构逐步向 单元化方向演变。在产业生态升级的过程中,企业对数据库这个基础软件提出了更高的要 求,一方面是对数据库软件本身高可用、高性能、高稳定性、弹性扩展等方面的要求,另一方 面则是对数据库软件与硬件、网络等集成后整体能力的要求。
- (3) 行列混存实时数仓解决方案: 在 V4.3.x 版本中,基于原有技术积累,依托 LSM-Tree 架构,实现行存列存存储一体化,一套代码一个架构一个 OBServer,列存数据和行存数

据完美共存,真正实现 TP 类和 AP 类查询的性能兼顾,以应对日益增长的实时分析需求,例 如,实时报表和实时风控、银行的白天交易晚上批处理、反洗钱系统。

- (4)仲裁多活解决方案:仲裁多活方案可以用更低成本实现高可用,适用于两地三中 心、同城三机房、跨城网络带宽或者同城第三机房弱网络场景。通过引入一个独立的仲裁 服务,允许通过更少副本数据提供良好的容灾能力。仲裁方案保证数据在多数派副本(四 个全功能副本 + 一个仲裁服务)或者全部副本(两个全功能副本 + 一个仲裁服务)上强同 步,并在半数全功能副本故障的情况下,自动进行故障降级,保证数据不丢失的同时业务持 续可用。
 - 4) 五种 OB Cloud 典型应用场景及解决方案
- (1) 高并发: 在零售、互联网金融、电商、游戏等行业, 高并发场景已成为常态, 通过对 应用架构和数据库架构的合理设计应对流量突增,为用户在峰值时刻提供"丝般顺滑"的体 验,应对企业面临的共同挑战。
- (2)传统数据库上云:数字化转型已进入深水区,传统企业随着业务的不断发展与递 增,核心系统运行在集中式数据库中会遇到各类挑战,如何提升数据库能力逐渐成为传统 企业在数字化转型成功与否的关键因素之一。
- (3) HTAP 实时分析: 为企业提供了低成本、快决策的数据能力。这要求数据仓库产 品必须满足多项严苛标准:能抓取全域海量数据、进行高性能流批处理。
- (4) 多云统一技术栈: 在数字化、云化转型的过程中,企业对于系统高可用性的需求日 益提升,多基础设施部署方案随之成为越来越多企业的选择。
- (5)多模一体化:在多样化数据需求日益增长的背景下,企业需要统一管理多种数据 类型,以简化技术架构、提升开发效率、降低运维复杂度。 随着数字化,跨业务系统的数据 孤岛和冗余成为企业数字化转型的主要挑战之一。
 - 5)十四种生态联合解决方案
- (1) Sm@rtEnsemble 新一代银行核心系统联合解决方案: SM@rtEnsemble 银行核心 业务系统全面兼容分布式数据库 OceanBase,对外呈现多维度的价值输出,促进银行核心竞 争力的全面提升。
- (2)新一代核心业务系统联合解决方案: 长亮科技联合 OceanBase,共同打造的基于 分布式数据库的核心业务系统解决方案,采用"微服务、云原生、单元化"的模式,协同银行 客户实现数字化转型。
- (3)金融分布式核心系统 ECAS 联合解决方案: 依托 OceanBase 提供数据层整体支 撑,从企业级视角整合传统金融和互联网金融应用体系,重塑金融产品,帮助银行进行"数 字化"转型。
- (4) 贷记卡联合解决方案: 实现了银行系统无限的弹性伸缩能力,应用+数据库多活、 同城双活、多地多活等不同模式,极大提升银行信用卡系统的容灾能力。
- (5) 手机银行联合解决方案: 为用户提供丰富的个性化客户服务,将银行利益与用户 利益充分结合,真正实现"随心、随行,服务就在身边,金融服务生活"的核心理念。
- (6) 恒生 UF3.0/O45/TA/ 估值联合解决方案: 利用高可用和水平扩展等能力,承载证 券交易、清算和资管核心业务系统,具备高容量、大并发、低时延的特点。
 - (7) 保险核心业务系统解决方案: 基于 OceanBase 摆脱对传统数据库的高度依赖,支

持同城多活、多地多活,推动信息技术应用创新上下游产业链发展。

- (8)智慧人社联合解决方案: OceanBase 数据库 + OMS 数据迁移服务, 高效助力东软 集团股份有限公司智慧人社联合解决方案实现"分布式多活架构"改造。
- (9) 运营商核心业务支撑系统联合解决方案: OceanBase 数据库 + OMS 数据迁移服 务,高效助力新大陆运营商核心业务支撑系统实现"分布式多活架构"改造。
- (10) 异构多源数据复制联合解决方案: OceanBase 与 SuperSync 结合,实现 OceanBase 与多种数据源的实时复制。
- (11) 云原生数据平台解决方案: 基于 OceanBase 计算引擎, 为企业提供全方位的数据 管理和分析能力。
- (12) GreptimeDB 时序数据库解决方案: 已被多家头部车企和能源行业客户广泛应 用,有效降低时序数据的使用成本,提高时序数据使用效率。
- (13)数据库变更全生命周期管理联合解决方案: 围绕数据库变更管理的全生命周期进 行设计,旨在帮助研发团队在数据访问合规的前提下,实现发布效率与安全性的全面提升。
- (14) K8s 数据基础设施管理联合解决方案:帮助开发人员、SRE、平台工程师在企业 中部署和维护专用的 DBPaaS。支持多种公共云和私有云环境部署变更时, RootServer 会 率先更新元数据,并通知相关 OBServer 节点同步信息,维持整个集群的数据一致性认知。

■ 任务实施

本任务主要是带领读者注册并完成阿里云登录。

步骤1 访问阿里云主页。

打开浏览器,通过输入阿里云官方网址或搜索引擎,进入阿里云首页,如图 1-9 所示。

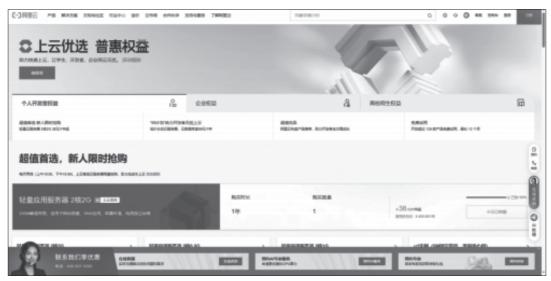


图 1-9 阿里云官方网站首页

步骤 2 注册并实名制。

第一次进入阿里云页面,需单击右上角"注册"按钮,跳转至注册页面,如图 1-10 所示。

在本页面中填写手机号、手机验证码完成注册并进行实名认证。如果已经有阿里云账户,请跳转到步骤3。

图 1-10 阿里云注册界面

步骤 3 完成系统登录。

完成注册后,单击屏幕右上角的"登录"按钮,进入登录界面,如图 1-11 所示。此时选择手机号登录,录入手机号,单击"获取验证码"按钮,验证码会发到对应手机号的手机上,接着输入验证码,如图 1-11 所示,单击"登录"按钮,即可登录阿里云官方平台。

图 1-11 阿里云登录界面

□拓展训练

1. 阿里云注册与 OceanBase 购前准备场景

某企业计划采购阿里云 OceanBase 数据库支撑业务,需先完成阿里云账号注册。运维人员需在个人计算机(Windows/macOS, Chrome/Edge 浏览器)上,通过阿里云官网完成账

号注册、实名认证与安全设置,找到 OceanBase 产品人口确认地域及规格,验证账号满足购 买条件,为后续采购做准备。

任务 1-2 部署 OceanBase 数据库

III 任务描述

本任务要求读者在完成阿里云登录的基础上,在阿里云平台上部署 OceanBase 数 据库。

| 知识解析

OceanBase 部署有多种分类方式,下面分别从云服务模式、部署工具及部署结构三种划 分方式分别为读者介绍。

1. 按云服务模式划分

按照云服务模式部署方式, OceanBase 可以分为公有云部署、私有云部署和混合云 部署。

- (1) 公有云部署:该模式最适合初学者,用户只需在公有云平台(如阿里云)上直接购 买 OceanBase 服务,由云服务提供商负责底层硬件资源的管理和维护,用户只需按需使用 数据库服务。
- (2) 私有云部署:该模式要求企业在自己的数据中心内部搭建 OceanBase 集群,使用 自己的硬件资源和网络环境,自行负责数据库的部署、运维和管理工作。该模式适用于对 数据安全性、隐私性和自主性要求较高的企业。
- (3)混合云部署:该模式结合了公有云和私有云的特点,企业可以根据自身业务需求 和数据特点,将一部分业务数据部署在公有云上,利用公有云的弹性和扩展性;将另一部 分对安全性和性能要求较高的数据部署在私有云中,实现资源的灵活调配和成本效益的最 大化。

2. 按 OceanBase 的部署工具划分

如果用户在本地搭建(私有云部署或混合云部署)OceanBase,可以通过以下部署工具 进行搭建。

- 1) OCP 平台部署
- (1) 定义与功能。

OCP 即 OceanBase 云平台,是为 OceanBase 数据库集群量身打造的企业级管理平台。 它提供图形化管理工具,可对 OceanBase 集群进行安装部署、监控告警、备份归档、性 能诊断等全生命周期管理,兼容 OceanBase 所有主流版本。

(2) 适用场景。

OCP 平台部署方式适用于企业级大规模集群部署和管理场景。当企业拥有多个 OceanBase 集群,需要进行统一、精细化运维管理,对集群的稳定性、可靠性和可管理性要求 较高时, OCP 是首选, 如大型金融机构、互联网公司的核心业务数据库集群管理。

(3) 优缺点。

该部署方式的优点是操作简单,界面友好,功能强大全面,能降低企业 IT 运维成本和 用户学习成本。缺点是对硬件要求高,官方推荐配置 CPU 为 32 核,内存为 128GB, 硬盘为 1.5TB 并且要求 SSD,还需要独立的元数据库和监控数据库,部署和维护相对复杂。

2) OBD 方式部署

(1) 定义与功能。

OBD 是 OceanBase 集群安装部署工具,可通过命令行或白屏界面部署 OceanBase 集 群。用户只需编写配置文件,执行相应命令,即可完成集群的部署、启动、停止、升级等 操作。

(2)使用场景。

OBD 方式部署适合个人用户、开发测试环境以及小规模生产环境。例如,数据库开发 人员在本地进行开发和测试,或小型企业初期搭建数据库系统,对资源占用和部署速度有 要求时,可使用 OBD 部署。

(3) 优缺点。

该部署方式的优点是资源占用轻量,操作简单,部署速度快,只要满足 OceanBase 本身 对硬件的基本要求即可,如最低 CPU 为 2 核、内存为 8GB 的配置。缺点是功能主要集中在 安装部署和简单维护,相比 OCP,集群管理能力有限。

3) 手动部署

手动部署方式需要手动下载 RPM 包,然后通过命令行指定配置来启动 OceanBase。 用户要熟悉 OceanBase 的安装配置流程,手动执行各种安装命令和配置参数。

该部署方式主要适用于对 OceanBase 非常熟悉,有特定部署需求和定制化要求,且不 适合使用自动化部署工具的特殊场景,如在一些特殊的操作系统环境或硬件平台上进行部 署,或者需要对安装过程进行深度干预和定制时。

该部署方式的优点是具有高度的灵活性和可控性,可根据具体需求进行精细配置。但 缺点同样突出,对操作人员的技术要求高,配置变更复杂,容易出现启动异常等问题,部署 过程烦琐,不适合大规模部署和快速部署需求。

4) Docker 方式部署

利用 Docker 容器技术部署 OceanBase,即将 OceanBase 及其相关组件打包成 Docker 镜像,通过运行镜像快速创建 OceanBase 实例。

该部署方式适用于需要快速搭建测试、开发环境,或者对环境隔离性和灵活性要求较 高的场景,如软件开发团队进行快速迭代开发、测试人员进行不同环境下的测试,以及在多 租户环境中为每个租户提供独立的数据库环境。

该部署方式的优点是对硬件要求低,不限制操作系统平台,部署灵活便捷,能快速创建 和销毁环境,方便进行环境的复制和迁移。缺点是可能存在一定的性能损耗,且对 Docker 技术的掌握有一定要求,在生产环境中的稳定性和兼容性需要进一步测试和验证。

5) ob-operator 部署

ob-operator 部署方式是运用 OceanBase 的 Kubernetes(简称 K8s)运维工具,用于在集 群中部署和管理 OceanBase。它延续了 K8s 开发者的使用习惯,通过 K8s 的资源对象和控 制器来管理 OceanBase 数据库,提供了容器化部署、自动扩缩容、故障恢复等功能。

该部署方式适用于已经采用 K8s 容器编排平台的企业,希望将 OceanBase 与 K8s 生态 系统深度集成,实现资源的统一管理和调度,以及利用 K8s 的自动化和弹性能力来管理数 据库。

该部署方式的优点是与 K8s 牛态无缝集成,充分利用 K8s 的优势,实现自动化部署、扩 缩容和故障恢复等功能,提高资源利用率和运维效率。缺点是需要对 K8s 和 ob-operator 有 一定的了解和掌握,部署和配置相对复杂,可能存在与 K8s 版本兼容性等问题。

3. 按 OceanBase 的部署结构划分

1)同城三机房三副本部署

同城三机房三副本部署是一种在同一城市内利用三个机房来保障高可用性的经典 方案。

在该部署模式下, OceanBase 将数据划分成三个副本, 分别置于三个不同的机房。每 个机房都承载着部分数据分片的一个副本,因此,任意一个机房出现故障,其余两个机房的 副本依旧能够维持数据的完整性与可用性。例如,在电商平台的订单数据处理场景中,海 量订单信息被切割成众多数据分片,这些分片的三个副本分别存于三个机房,保障数据不 会因某个机房的断电、网络故障或者硬件损坏而丢失。

(1) 优势。

低延迟与高带宽:由于三个机房同处一城,它们之间的网络延迟极低,通常在毫秒级 别,而且能够获取高带宽的网络连接。这对于那些需要频繁交互数据的业务场景极为有 利,如金融同城转账,交易数据能迅速在副本间同步,保障资金状态的实时一致性,提升用 户体验。

快速故障切换:当某个机房突发故障,系统可以迅速感知并在极短时间内,往往是数秒 内,将业务流量切换至其他正常机房的副本上。因为同城网络的高稳定性与低延迟,切换 过程对业务的影响微乎其微,用户几乎察觉不到交易、查询等操作的中断。

运维便利性:同城运维人员往来各机房相对便捷,无论是硬件巡检、故障排查还是系统 升级,都能快速响应。相较于跨地域部署,同城部署减少了运维人员长途奔波的成本,也降 低了因远程操作带来的不确定性。

(2)局限性。

城市级灾难风险:如果整个城市遭遇大规模自然灾害,如地震、洪水等,三个机房可能 同时受损,尽管这种情况概率较低,但一旦发生,数据库服务将面临严峻考验,可能出现数 据短暂不可用的状况。

2)三地五中心五副本部署

三地五中心五副本部署把高可用保障拓展到更广阔的地理范围,涉及三个不同地区的 五个数据中心。

数据被复制成五份,分散于这五个中心。通常会精心规划每个地区放置的副本数量, 避免某个区域过于集中副本,以此来抵御区域级别的灾难。例如,可能在一个地区的两个 中心各放置一份副本,另外两个地区的三个中心分别放置一份副本,确保数据分布均衡。

(1) 优势。

超强容灾能力;跨越三个不同地区,有效规避了地区性自然灾害、大面积停电等极端事 件对数据可用性的影响。就算其中一个甚至两个地区出现严重问题,其余地区的副本依然

能够支撑起整个数据库业务,为金融、政务等对连续性要求极高的行业提供坚实后盾。

异地双活 / 多活:支持多地之间的双活或者多活业务模式,不同地区的用户访问距离自 己最近的数据中心,减少跨地域网络延迟,提升响应速度,同时实现业务负载在多地间的动 态均衡,优化整体性能与资源利用效率。

(2)局限性。

网络复杂性:三地之间的网络环境复杂多样,不同运营商、不同地域的网络带宽与延迟 差异较大,要维持五个副本间的数据同步一致性,对网络配置与优化要求极高,运维难度与 成本相应提升。

成本高昂;涉及多个地区的数据中心建设、租赁,加上长距离、大容量的网络专线投入, 硬件成本、运维成本以及网络成本都会大幅攀升,中小规模企业往往难以承受。

3) 同城两机房主 - 备部署

同城两机房主-备部署是一种相对基础且成本可控的高可用方案,依赖同城的两个机 房构建主备关系。

一个机房作为主机房,承载所有的读写业务,是业务运行的核心;另一个机房则充当备 机房,平时处于热备状态,实时同步主机房的数据更新。例如,在企业的内部管理系统中, 员工日常的操作数据都在主机房写入与读取,备机房默默跟随主机房的数据变更,时刻准 备在主机房故障时顶上。

(1) 优势。

成本效益:相较于多机房多副本部署,只需两个机房,硬件采购、网络租赁等成本显著 降低, 适合预算有限但又对可用性有一定要求的中小微企业, 在保障核心业务连续性的同 时,控制成本。

简单运维;运维逻辑较为简单清晰,主要精力集中在保障主备机房之间的数据同步以 及切换机制的可靠性上。技术团队无须应对复杂的多副本协调、多区域网络优化难题,上 手难度较低。

(2)局限性。

单点故障隐患:主机房一旦出现故障,尽管备机房能够接替工作,但切换过程仍可能造 成短暂业务中断,尤其在高并发业务场景下,瞬间的中断也可能导致部分交易失败、用户体 验受损:并且如果备机房本身存在未察觉的隐患,可能在切换后无法稳定支撑业务。

4)两地三中心主-备部署

两地三中心主 - 备部署融合了跨地域与主备模式的特点,通过两个不同地区的三个数 据中心保障高可用性。

通常在一个地区设置主数据中心,承担主要读写业务;另外两个中心,一个位于同城作 为同城备中心,另一个位于异地作为异地备中心。主中心的数据变更依次同步到同城备中 心与异地备中心。例如,在银行跨区域业务场景下,总行所在的数据中心为主中心,同城分 行的一个中心做同城备份,异地分行的中心做异地备份,保障资金业务的连贯性。

(1) 优势。

跨区域容灾:兼顾同城快速切换与异地灾难恢复,当同城主中心遭遇突发状况,同城备 中心可迅速接管,降低切换延迟;若同城整体出现问题,异地备中心能保障业务持续运行, 应对多种故障场景。

灵活资源利用:不同地区的数据中心可根据当地业务需求,在非故障时段分担部分读 业务,减轻主中心压力,优化资源分配,提升整体性能。

(2)局限性。

同步延迟挑战: 跨地域的数据同步受限于网络距离与带宽, 可能出现一定的同步延迟, 尤其在异地数据同步时,这需要精细的同步策略与缓存机制辅助,不然容易引发数据一致 性短暂问题,影响业务准确性。

5)同城三机房仲裁服务部署

同城三机房仲裁服务部署在同城的三个机房基础上,引入仲裁机制来保障高可用决策 的准确性。

当三个机房中的某个机房出现网络分区、数据同步异常等复杂故障场景,难以单纯凭 借副本数量判断业务走向时,仲裁服务发挥作用。它综合考量各机房副本状态、网络连接 质量等多因素,做出公正裁决,决定哪个机房的副本数据最为可靠,业务应切换至何处。这 类似于在一场争议比赛中,仲裁员依据详细规则给出最终判定。

(1) 优势。

精准故障判定:解决复杂网络环境下,常规副本切换机制可能失效的难题,通过多维度 评估,确保故障切换决策精确无误,避免误判导致的业务二次伤害,提升系统应对复杂故障 的韧性。

提升稳定性:在高并发、高负载的业务运转期间,即使遭遇机房间网络波动等异常,仲 裁服务保障核心业务稳定不中断,维持数据一致性,为诸如电商大促、证券交易高峰时段保 驾护航。

(2)局限性。

仲裁服务自身风险:仲裁服务成为新的关键节点,如果其自身出现故障,或者遭受攻 击,整个高可用决策流程会受干扰,所以对仲裁服务要投入额外的冗余、安全防护资源。

6)三地五机房仲裁服务部署

三地五机房仲裁服务部署把仲裁机制拓展到更宏大的三地五中心架构下。

在跨越三地的复杂网络与数据分布格局中,仲裁服务需要收集来自五个机房的海量状 态信息,包括副本完整性、网络延迟、节点负载等,运用更复杂的算法与规则来裁定业务走 向。由于地理跨度大,信息传递与整合难度提升,但成功裁决后能让业务在跨地区的复杂 灾难场景下精准切换。

(1) 优势。

顶级容灾与可用性:结合多地多中心的物理冗余与仲裁的智能决策,从容应对跨地区 的自然灾害、大面积网络故障,保障全球级业务的持续运营,适合跨国企业、国际金融机构 这类有超高标准的用户。

数据一致性保障:即使面对极端复杂的网络分区、数据传输乱序等状况,仲裁后的业务 切换能最大程度确保新老业务节点数据一致性,维护业务逻辑正常。

(2)局限性。

高复杂度运维:运维涉及三地的网络运营商协调、五个机房的硬件软件协同,加上仲裁 服务本身的复杂运维,对运维团队专业素养、经验要求极高,运维成本也是水涨船高。

7)两地三机房仲裁服务部署

两地三机房仲裁服务部署是在两个不同地区的三个机房场景下运用仲裁服务。

介于同城与三地架构之间,仲裁服务收集三个机房的关键数据,平衡同城低延迟优势 与跨地域容灾需求。例如,在区域连锁企业的数据库部署中,总公司所在城市一个主机房、 同城分公司一个机房,异地分公司一个机房,仲裁决定在同城网络故障但业务需持续时,是 否启用异地机房。

(1) 优势。

适中成本与性能平衡:成本低于三地五机房部署,运维难度也有所降低:比单纯同城部 署多了异地容灾能力,在性能、可用性、成本之间找到一个较好的平衡点,适合有一定规模 与容灾需求的区域性企业。

灵活应对区域故障:应对区域内常见故障场景游刃有余,快速判断业务切换方向,减少 业务中断时长,保障区域业务连贯性。

(2)局限性。

有限的异地容灾覆盖:相比三地五机房的广泛异地覆盖,其抵御大规模跨地区灾难能 力稍弱,对于业务扩张迅速、跨地域业务复杂的企业,后续可能需要升级架构。

OceanBase 的租户模式是其实现资源隔离与共享的关键特性,可满足不同用户和业务 场景需求。

■任务实施

OceanBase 具有多种部署方式,本书主要采用公有云方式进行 OceanBase 的数据库 搭建。

步骤 1 进入 OceanBase 工作台。

在任务 1-1 中,我们已经完成阿里云的注册并进行了实名认证。现在在搜索框中输入 OceanBase 数据库,单击"搜索"按钮,如图 1-12 所示。单击"云数据库 OceanBase 版"标 签, 进入 OceanBase 工作台, 如图 1-13 所示。

图 1-12 云数据库 OceanBase 版

图 1-13 OceanBase 工作台

步骤 2 选择数据库实例。

单击创建数据库实例,按需选择商品类型,包括以下三种类型。

- (1) 包年包月:预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付 费更实惠,且购买时长越长,折扣越多。
- (2)按量付费:后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费 用。本任务选择按量付费。
- (3) Serverless:采用秒级计费逻辑,并按小时结算费用,即根据客户每秒所使用的计算 和存储资源的运行时长计费。Serverless 实例能够根据业务负载变化,在客户设置的资源算 力范围内自动弹性伸缩。

选择计费方式后,依次按需要选择实例类型(本任务选择租户实例(MySQL))、系列、 地域(本任务选择华北 2(北京))、部署方案、可用区、CPU架构、节点规格、存储类型等信 息,购买实例如图 1-14 所示,完成选择后单击"立即购买"按钮。确认信息后单击"立即开 通"按钮,如图 1-15 所示,支付后开通成功。左侧实例列表中显示创建成功的实例信息,实 例列表如图 1-16 所示。

图 1-14 购买实例

图 1-15 立即开通

图 1-16 实例列表

□ 拓展训练

1. 部署场景分析

假设你所在的公司有不同业务需求,如电商业务对高并发读写要求高、金融业务对数 据安全和一致性要求极高,现要求你分析并撰写一份报告,阐述在这两种场景下分别适合 哪种 OceanBase 部署方式,以及选择的依据。

2. 成本效益核算

在阿里云上模拟不同配置的 OceanBase 实例购买流程,记录不同规格(如 CPU、内存、 存储大小)实例的价格。结合公司业务预估的资源使用量,计算不同配置下一年的使用成 本,分析成本与性能之间的关系。

3. MvSQL 安装与启动

目前 MySQL 数据库已成为最流行的数据库之一,它凭记其良好的性能和开源已经被 大量地应用在实际项目中。开发团队可用 MySQL 客户端连接 OceanBase 的 MySQL 租户, 开发数据库应用,还能享受 OceanBase 的透明扩展、高可用等特性。接下来介绍 MySQL 的 安装及启动方法。

步骤 1 MySQL 的安装包下载。

MySQL 针对个人用户和商业用户提供不同版本的产品,其中社区版本是供个人用户 免费下载的开源数据库:标准版本、企业版和集成版等多个版本可供商业用户选择,以满足 其特殊的商业和技术需求。

个人用户可以登录 MySOL 官方网站,在 Downloads 页面(见图 1-17)直接下载相应的 版本。

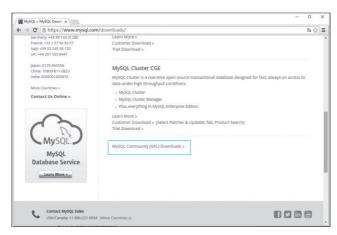


图 1-17 MySQL Downloads 页面

单击 MySQL Community(GPL) Downloads 超链接,进入如图 1-18所示的 MySQL Community Downloads 页面。

图 1-18 MySQL Community Downloads 页面

单击 MySQL Community Server 超链接,进入 Download MySQL Community Server 页面,根据操作系统选择合适的安装文件,本书以 Windows 操作系统的 MySQL Server 为例。进入如图 1-19 所示的页面中的 Download 开始下载,这里选择下方的 Download 按钮,选择离线包下载,上方的下载按钮是在线安装。注意此处一定要选择 MSI Installer 安装包,不要选择 Windows(x86/64-bit) ZIP Archive 压缩包格式。

图 1-19 MySQL Installer 下载页面

步骤 2 MySQL 系统的安装和配置。

下载成功后会得到一个扩展名为 msi 的安装文件,双击该文件可以安装 MySQL 服务器。以 8.0.28 版本为例,具体安装步骤可扫描二维码获得。

步骤 3 Navicat 客户端工具下载与安装。

Navicat 是一套可创建多个连接的数据库管理工具,它可以方便管理不同类型的数 据库,同时也支持管理云数据库。它提供了三种平台的版本,分别是 Microsoft Windows、 macOS 和 Linux。Navicat 有针对特定数据库的管理工具,如管理 MySQL、SQL Server、 Oracle 和 MongoDB 等;还有 Navicat Premium 版本,它可以从单一应用程序中同时连接多 种类型的数据库,同时它还与主流的 Amazon RDS、Microsoft Azure、Oracle Cloud、阿里云、 腾讯云和华为云等云数据库兼容,可以快速地创建、管理和维护数据库。

用户可以登录 Navicat 官网下载客户端工具 Navicat Premium 16,如图 1-20 所示。

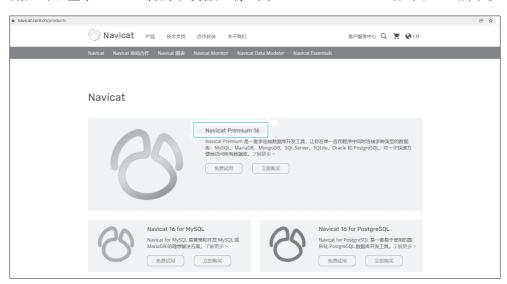


图 1-20 Navicat Premium 16 下载页面

下载完成后,双击安装包,开始安装。整个安装过程,可以全部选择默认方式,安装完 成后如图 1-21 所示。

图 1-21 Navicat Premium 16 安装完成界面

步骤 4 以 Windows 命令行方式登录。

通过键盘上的 Win+R 键,打开运行窗口,然后输入 cmd,打开 Windows 命令提示符窗口(如果是 Win10 或 Win11 系统,可以先通过搜索功能找到命令行提示符,然后以管理员身份运行)。在窗口中输入 mysql -u root -p 命令后,根据提示输入密码,按 Enter 键即 可成功登录 MySQL 服务器,如图 1-22 所示。默认的用户名为 root,密码要使用安装时预设置好的,建议使用强密码,不要使用太过简单的密码,尤其是在生产环境中。为了安全 起见,还要为 MySQL 新建用户,不要直接使用 root 用户或分配 root 用户给具体的项目使用。

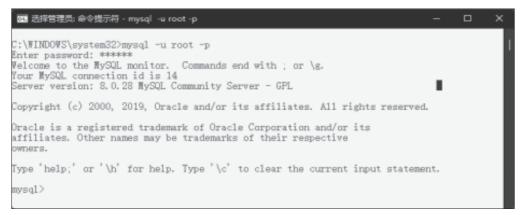


图 1-22 成功登录 MySQL 服务器

步骤 5 以 MySQL Command Line Client 方式登录。

依 次 单 击 "开 始"→ MySQL → MySQL8.0 Command Line Client 命 令,输入正确的 root 密码,若出现 MySQL> 提示符,则表示正确登录了 MySQL 服务器,如图 1-23 所示。

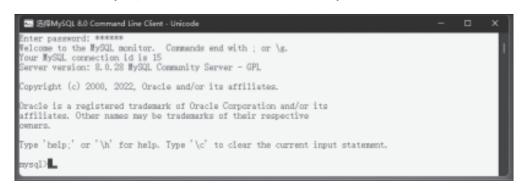


图 1-23 MySQL 数据库 Command Line Client 窗口

步骤 6 使用 Navicat Premium 图形化管理工具登录。

可以使用 Navicat Premium 图形化管理工具连接 MySQL 数据库。当 Navicat Premium 安装成功后,需要进行对连接进行配置,如图 1-24 所示,连接成功后,将进入 Navicat Premium 数据库管理软件的主界面。

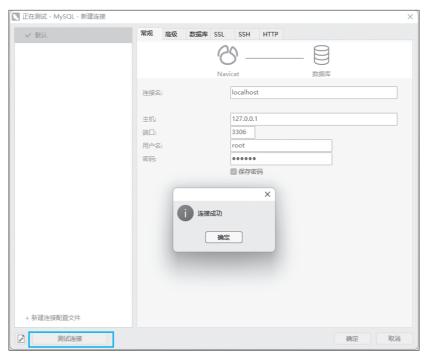


图 1-24 Navicat Premium 连接 MySQL 服务器对话框

课后习题

选择题

1. OceanBase 在电商业务场景中,为满足高并发读写需求,()方式较为合适。
------------------------------------	----------

A. 单机房单节点部署

B. 同城三机房三副本部署

C. 手动单机部署

- D. 仅在本地测试环境部署
- 2. 金融业务对数据安全和一致性要求极高, OceanBase 应优先选择()方式。
 - A. 公有云简单配置部署
- B. 基于 Docker 的快速部署
- C. 三地五中心五副本部署
- D. 利用 OBD 的简易部署
- 3. 在阿里云上购买 OceanBase 实例时,(
-)不是常见的配置选项。

A. 硬盘转速

B. CPU 核心数

C. 内存大小

- D. 存储容量
- 4. OceanBase 通过 OCP 平台部署的优势不包括(
 - A. 图形化管理工具,操作简便
- B. 对硬件要求低
- C. 可进行全生命周期管理
- D. 兼容性强, 支持多种版本
- 5. 关于 OceanBase 基于 OBD 方式部署,说法正确的是(
 - A. 只适用于大规模生产环境
- B. 不支持命令行操作
- C. 部署速度快,资源占用轻量
- D. 必须依赖特定的云服务

- 6. 在阿里云购买 OceanBase, 若选择包年包月付费方式, 以下说法正确的是()

 - A. 随时可按实际使用量退费 B. 价格会随使用量动态变化
- C. 一次性支付一定期限费用 D. 只适用于测试环境 7. OceanBase 手动部署的特点是(

 - A. 完全不需要技术人员操作
 - C. 可根据需求进行深度定制
- B. 部署过程简单快捷
- D. 只能在公有云环境进行
- 8. 当在阿里云上购买 OceanBase 实例后,发现性能无法满足业务需求,首先应考虑的 是() 。

)。

- A. 重新购买一个全新实例
- B. 联系阿里云客服要求退款
- C. 在控制台进行实例规格升级 D. 更换其他云平台的数据库服务
- 9. OceanBase 的 Docker 方式部署适用于以下()场景。
 - A. 对数据安全要求极高的核心业务 B. 快速搭建测试和开发环境
 - C. 大规模企业级生产环境
- D. 对性能要求极致的场景
- 10. 在阿里云购买 OceanBase 时,设置安全组规则的主要目的是()。
 - A. 优化数据库性能 B. 控制网络访问权限

 - C. 降低购买成本 D. 方便实例管理

単任 务 评 价

请扫描下方二维码,完成本项目的任务评价表单。

项目1的任务评价表单