
第5章 初 等 数 论

初等数论又称为算术,它起源于古希腊.被数学家高斯誉为“数学皇冠”的数论是一门

研究整数特别是正整数性质的学科,它有近四千年的古老历史,却始终充满活力.中国在数

论研究方面也取得了辉煌的成就,例如中国剩余定理和陈氏定理等.
初等数论在算法学、密码学等计算机领域有着非常重要的应用,国外离散数学教材几乎

都会有这部分内容,其讨论范围为离散的整数集Z= {…,-3,-2,-1,0,1,2,3,…}.
通过对本章的学习,可较深入地体会集合、映射(即函数)、运算和关系在具体学科研究

中所扮演的角色.

5.1 整除关系与素数

5.1.1 整除关系与带余除法

  【定义5-1】 整数集Z上的整除关系(divisibilityrelation)|定义为,对于任意m,n∈Z,

m|n 当且仅当存在q∈Z,使得n=qm.这时称m 是n 的因数(divisor/factor)或n 是m 的

倍数(multiple).
根据定义5-1知,6和-6的因数有1,-1,2,-2,3,-3,6,-6,特别地有2|6,-2|6,

2|-6,-2|-6.任意整数都是0的因数,即对于任意n∈Z,有n|0,包括0|0.
对于任意正整数n,用Dn表示n 的所有正因数组成的集合,于是D12= {1,2,3,4,6,

12}.
对于任意整数x,y,z,m 和n,Z上的整除关系具有如下性质.
(1)对于任意x∈Z,有x|x(自反性).
(2)若x|y 且y|x,则x =y 或x=-y.
(3)若x|y 且y|z,则x|z(传递性).
(4)若x|y 且x|z,则x|(my +nz).
可以证明下面的定理.
【定理5-1】(带余除法) 对于整数m 和n,若m ≠0,存在唯一一对整数q和r,使得

n=qm +r, 0≤r<|m|
其中,q称为n 除以m 的商(quotient),r称为n 除以m 的余数(remainder).

证

(1)存在性.令A={n-km|k∈Z且n-km≥0}.显然,A≠⌀.于是A 中存在最小元

素r,这时设k =q,即r=n -qm,因而n =qm +r,r≥0.
下面证明r<|m|.若r≥|m|,则n -qm -|m|≥0.由于n -qm -|m|∈

A,而n -qm -|m|<n -qm,矛盾.于是存在整数q 和r 使得n =qm +r,0≤
r<|m|.
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(2)唯一性.假设还存在一对整数q'和r',使得n=q'm+r',0≤r'<|m|.这时,q'm+
r'=qm+r,于是(q'-q)m=r-r',进而m|r-r',因而r-r'=0,即r'=r,进而q'=q,
唯一性得证.

使用带余除法,有2019=252×8+3,2019=(-252)×(-8)+3.
显然,当m ≠0时,整除是余数为0时的带余除法.
设b 为大于1的整数,则b进制数

(urur-1…u1u0)b =urbr +ur-1br-1+…+u1b+u0

  利用带余除法,可以将十进制数与其他进制的数进行转换.例如,十进制数247转换成

八进制数的方法如下:247=30×8+7,30=3×8+6,于是

247=30×8+7=(3×8+6)×8+7=3×82+6×8+7
因此,247= (367)8.

同理,327=28+26+22+21+1= (101000111)2.
与带余除法密切相关的是模运算.
【定义5-2】 对于正整数m,定义x 模m 运算(modulomoperation)x(modm)是整数

x 除以m 的余数.
根据带余除法知,x (modm)是使x=qm+r,0≤r<m 成立的整数r.这里,f 是Z上

的模m 运算,是一元运算.
下面给出模运算的3个最简单的应用.
将26个英文字母a,b,c,…,z分别对应于整数0,1,2,…,25,为了保密,可以将每

一个字母往后推移3位,若接收到的密文为loryhbrx,则明文为iloveyou.这时的加密变

换为c= (p +3)(mod26),解密变换为p = (c-3)(mod26),其中p 是明文对应的整

数,c是密文对应的整数,3是密钥.这种密码称为凯撒密码(Caesarcipher),早在公元前1
世纪,古罗马皇帝凯撒就使用该方法传递作战命令.

将大量记录存放在m 个不同的链表,可以将每个记录的识别码n 进行模m 运算,运算

结果为该记录所在的链表,即h(n)=n(modm).通常将h 称为散列函数或哈希函数(Hash
function).

利用模运算产生(0,1)上服从均匀分布的伪随机数(pseudorandomnumber).选取4个

非负整数:模数m,乘数a,常数c和种子数x0,其中2≤a<m,0≤c<m,0≤x0<m,按
下式得到序列x1,x2,x3,…:

xn =(axn-1+c)(modm)

令un=
xn

m
(n=1,2,3,…),得到(0,1)上服从均匀分布的伪随机数.

5.1.2 素数与素因数分解

【定义5-3】 对于大于1的正整数p,若Dp={1,p},即p 的正因数只有1和p,则称

p 为素数(prime),否则称p 为合数(compositenumber).
素数又称为质数.1既不是素数又不是合数.最前面的几个素数依次为2,3,5,7,11,

13,17,19,23,29,31,37,41,43,47,53.根据埃拉托色尼筛选法(thesieveofEratosthene),
容易得知,在正整数序列中,越往后素数越少,但可以证明存在无限多个素数,进而所有素数
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构成的集合是一个可列集.
检查一个大于1的正整数是否为素数称为素数测试.素数测试不仅具有重要的理论意

义,而且在计算机密码学中具有十分重要的应用价值.
【例5-1】 证明:若a>1,an-1是素数,则a =2且n 是素数.
证 显然,n 为正整数.
若a >2,则由an-1=(a-1)(an-1+an-2+…+1)可知,an-1是合数,因而a=2.
当n 为合数时,即n=ab,1<a<n,1<b<n,有1<2a-1<2n-1且2n-1=(2a)b-1.

容易验证xm-ym=(x-y)(xm-1+xm-2y+…+ym-1),进而2a-1|2n-1,于是2n-1是

合数,因此n 是素数.
1.梅森素数

当n 为素数时,22-1=3,23-1=7,25-1=31,27-1=127都是素数,211-1=2047=
23×89是合数.对于素数p,2p-1称为梅森(Mersenne)素数.到2024年10月为止,英伟

达公司36岁员工LukeDurant利用GIMPS(greatestinternetprimemersennesearch)项目

找到了第52个梅森素数2136279841-1,并获得了3000美元奖励,这个数有41024320位.你

也可以加入梅森素数寻找的行列中(www.mersenne.org/prime.htm),利用超算能力全球第

一和第二的中国“神威·太湖之光”和“天河二号”超级计算机,也许你会在15min内成为

名人.
2.孪生素数

若两个素数之差为2,这两个素数就称为孪生素数(twinprime),例如3和5、5和7、11
和13、17和19、29和31等.

是否存在无限对孪生素数是至今未解决的公开问题.2013年5月,美籍华人张益唐

(YitangZhang)经过多年努力,在不依赖未经证明的推论的前提下,率先证明了一个“弱孪

生素数猜想”,即“存在无限对其差小于7000万的素数”.2014年2月,他将素数对之差缩小

到了246.
3.哥德巴赫猜想

哥德巴赫(C.Goldbach,1690—1764)在1742年提出“大于4的偶数是两个奇素数之和

(俗称‘1+1’)”的猜想.现已经对直到1018的所有的大于4的偶数都验证了该结论是正确

的.1966年,我国数学家陈景润证明了“一个充分大的偶数是一个奇素数与不超过两个奇素

数的乘积之和(俗称‘1+2’)”,被称为陈氏定理,这是目前为止最好的结果.
若一个素数p 是a 的因数,则称p 是a 的素因数.由于合数必存在素因数,于是有下述

素因数分解定理(primefactorizationtheorem),又称为算术基本定理.
【定理5-2】(素因数分解定理) 任何大于1的整数n 均可分解成素数乘积,即

n=pr1
1pr2

2 …prk
k

其中,p1,p2,…,pk是不同的素数,r1,r2,…,rk 是正整数.
证 对n 使用数学归纳法.当n=2时显然成立.假设大于2、小于k的整数均可分解成

素数的乘积.当n=k时,若k为素数,结论显然成立;若k 为合数,则n=ab,1<a<n,1
<b<n.根据归纳假设,a 和b均可分解成素数的乘积,进而n 可分解成素数的乘积,有

12=22×3
13=131=13
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2024=23×11×23
2025=34×52

2026=2×1013

  上述定理表明,从理论上讲,任何大于1的整数均可进行素因数分解,但一个较大的正

整数的素因数分解问题是一个NP难问题.当n=142022时,

Fn =22n +1
的一个素因数到目前为止尚未找到.同样,10100+37也未找到其一个素因数.从理论上讲,

1994年Shor给出的量子算法在量子计算机上能有效解决该问题.
借助于素因数分解定理,可以证明以下结论.

【例5-2】 证明:若n 是合数,则n 必有一个小于或等于n的素因数.
证 已知n 是合数,于是存在a 和b使得n=ab,1<a<n,1<b<n.于是a 和b中必

有一个小于或等于n.这个因数或为素数,或根据素因数分解定理有素因数,这时总能找到

一个小于或等于 n的素因数.

因此,要检查n 是否为素数,只需要检查n 是否有一个小于或等于 n且大于1的素因

数即可.根据此结论,可以编写一个程序以检验给定的正整数是否为素数.同时,还可以对

正整数进行素因数分解.
【例5-3】 对2019进行素因数分解.

解 显然,若2019是合数,则其必有一个小于或等于 2019<45的素因数.容易知道,

3是2019的素因数,即2019=3×673.类似地,若673是合数,则其必有一个小于或等于

673<26的素因数:2,3,5,7,11,13,17,19,23.由于2,3,5,7,11,13,17,19,23都不是

673的素因数,因此673是素数.故2019的素因数分解为

2019=3×673

5.1.3 最大公因数

1.最大公因数的定义和计算

【定义5-4】 对于任意整数m,n,若d|m 且d|n,则称d 为m 和n 的公因数(common
divisor).整数 m 和n 的最大的公因数称为 m 和n 的 最大公因数(greatestcommon
divisor),用gcd(m,n)或(m,n)表示.

例如,由于-2|4且-2|-6,所以-2是4和-6的公因数.容易知道,4和-6的所有

公因数为-1,-2,1和2,其最大公因数为2,即gcd(4,-6)=2.
整数m 和n 的最大公因数也可记为(m,n),即gcd(m,n)=(m,n).由于任何整数都

是0的因数,因此gcd(0,0)不存在.若gcd(m,n)存在,则gcd(m,n)必为正整数.
显然,gcd(m,n)=gcd(n,m)=gcd(|m|,|n|)且当m ≠0时gcd(m,0)=|m|.

因此,在很多的时候,讨论的是两个正整数的最大公因数.
若m=pr1

1pr2
2 …prk

k ∈Z+,n=ps1
1ps2

2 …psk
k ∈Z+(p1,p2,…,pk是不同的素数,r1,r2,

…,rk和s1,s2,…,sk是非负整数),则

gcd(m,n)=pmin(r1,s1)
1 pmin(r2,s2)

2 …pmin(rk,sk)
k
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  下面介绍求两个正整数m 和n 的最大公因数gcd(m,n)的有效算法———辗转相除法,
又称为欧几里得算法(Euclidalgorithm),是公元前300年欧几里得在其《几何原本》中给出

的,这可以算是离散数学最早的算法研究成果.
先证明下面的定理.
【定理5-3】 对于任意不全为0的整数n,m 和r,若存在整数q使得n=qm+r,则n

和m 与m 和r有完全相同的公因数,进而gcd(n,m)=gcd(m,r).
证 显然,d|n 且d|m 当且仅当d|m 且d|r.于是n 和m 与m 和r有完全相同的公

因数,进而gcd(n,m)=gcd(m,r).
对于正整数n 和m(不妨设n≥m),多次使用带余除法,有

n=q1m+r1,0<r1 <m
m=q2r1+r2,0<r2 <r1
    ︙

rk-2=qkrk-1+rk,0<rk <rk-1

rk-1=qk+1rk

由于rk<… <r2<r1<n,这种k是存在的,于是gcd(n,m)=gcd(m,r1)=gcd(r1,r2)=
…=gcd(rk-1,rk)=gcd(rk,0)=rk.

因为

rk =rk-2-qkrk-1

   ︙

r2=m-q2r1
r1=n-q1m

于是存在整数s和t使得

gcd(n,m)=ns+mt
  从欧几里得算法可得以下定理.

【定理5-4】 对于任意不全为0的整数n 和m,根据欧几里得算法可得gcd(n,m),且

gcd(n,m)是n 和m 的整系数线性组合,即存在整数s和t使得gcd(n,m)=ns+mt.
上式中的s和t称为贝祖系数(Bézoutcoefficient).它不是唯一的:若gcd(n,m)=ns

+mt,则对于任意k∈Z,gcd(n,m)=n(s+km)+m(t-kn).
【例5-4】 利用欧几里得算法计算gcd(119,35),并求出整数s和t使得gcd(119,35)=

119s+35t.
解 因为119=3×35+14,35=2×14+7,14=2×7,所以gcd(119,35)=

7.由于7=35-2×14,14=119-3×35,于是7=35-2× (119-3×35)=
119× (-2)+35×7.

2.互素关系

【定义5-5】 设m,n ∈Z,若gcd(n,m)=1,则称m 和n 互素(relativelyprime或

coprime).
整数集Z上互素关系具有对称性.对于任意素数p 和任意整数n,显然gcd(p,n)=

1或p,于是p 与n 互素或p|n.
根据定理5-4,可得以下定理.
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【定理5-5】 对于任意整数m 和n,gcd(n,m)=1的充要条件是存在整数s和t使得

ns+mt=1.
由此可得以下定理.
【定理5-6】 对于整数m,n 和k,下述结论成立.
(1)若m|k,n|k,且gcd(m,n)=1,则mn|k.
(2)若m|nk且gcd(m,n)=1,则m|k.
证 由于gcd(m,n)=1,存在整数s和t使得ns+mt=1,进而nks+mkt=k.
(1)若m|k,n|k,则mn|kn,mn|km,于是mn|kns,mn|kmt,因此mn|nks+mkt,

即mn|k.
(2)若m|nk,则m|nks+mkt,这时m|k.
【推论】 设p 为素数且p|mn,则p|m 或p|n.
证 若p m,则gcd(p,m)=1.由定理5-6知,p|n.
下面定义正整数集Z+上的重要函数———欧拉函数.
【定义5-6】 对于正整数n,用φ(n)表示小于或等于n 且与n 互素的正整数个数,称

φ 为欧拉函数(Eulerfunction).
例如,φ(1)=1,φ(2)=1,φ(3)=2,φ(4)=2,φ(5)=4,φ(6)=2.当p 为素数

时,φ(p)=p -1.
设n 是大于1的正整数n,其素数分解为n=pr1

1pr2
2 …prk

k ,其中p1,p2,…,pk是不同的

素数,r1,r2,…,rk是正整数,利用容斥原理可以证明以下定理.
【定理5-7】 对于大于1的正整数n,若n=pr1

1pr2
2 …prk

k ,其中p1,p2,…,pk是不同的

素数,r1,r2,…,rk是正整数,则

φ(n)=n1-
1
p1

æ

è
ç

ö

ø
÷ 1-

1
p2

æ

è
ç

ö

ø
÷ … 1-

1
pk

æ

è
ç

ö

ø
÷

  特别地,若p 和q是不同的素数,则φ(pq)=(p-1)(q-1).
证 设全集U = {1,2,…,n},用Ai表示能被pi整除的U 中元素组成的集合,则

|Ai|=
n
pi
, i=1,2,…,k

|Ai ∩Aj|=
n

pipj
, i,j=1,2,…,k,i≠j

   ︙

|A1 ∩A2 ∩ … ∩An|=
n

p1p2…pk

因为|U|=n 且

 |A1 ∪A2 ∪ … ∪An|=∑
n

i=1
Ai|- ∑

1≤i<j≤n
|Ai ∩Aj|+

∑
1≤i<j<k≤n

|Ai ∩Aj ∩Ak|-…+(-1)n+1|A1 ∩A2 ∩ … ∩An|

所以

|A1 ∩A2 ∩ … ∩An|=|A1 ∪A2 ∪ … ∪An|
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=|U|-∑
n

i=1
Ai|+ ∑

1≤i<j≤n
|Ai ∩Aj|-

∑
1≤i<j<k≤n

|Ai ∩Aj ∩Ak|+…+(-1)n|A1 ∩A2 ∩ … ∩An|

=n-
n
p1

+
n
p2

+…+
n
pk

æ

è
ç

ö

ø
÷+

n
p1p2

+
n

p1p3
+…+

n
pk-1pk

æ

è
ç

ö

ø
÷+…+

(-1)n
n

p1p2…pk

=n1-
1
p1

æ

è
ç

ö

ø
÷ 1-

1
p2

æ

è
ç

ö

ø
÷ … 1-

1
pk

æ

è
ç

ö

ø
÷

  若p 和q是不同的素数,则φ(pq)=pq1-
1
p

æ

è
ç

ö

ø
÷ 1-

1
q

æ

è
ç

ö

ø
÷=(p-1)(q-1).

5.1.4 最小公倍数

【定义5-7】 对于任意整数m,n,若m|d 且n|d,则称d 为m 和n 的公倍数(common
multiple).非零整数m 和n 的公倍数中,最小的正整数称为m 和n 的最小公倍数(least
commonmultiple),记为lcm(m,n)或[m,n].约定,lcm(n,0)=0.

例如,由于4|-12且-6|-12,所以-12是4和-6的公倍数.4和-6的公倍数很多,
例如-12,-24,12,24,36等,其最小正整数为12,即lcm(4,-6)=12.

由于lcm(m,n)=lcm(n,m)=lcm(|m|,|n|),因此在很多的时候,讨论的是两个

正整数的最小公倍数.
若m=pr1

1pr2
2 …prk

k ∈Z+,n=ps1
1ps2

2 …psk
k ∈Z+(p1,p2,…,pk是不同的素数,r1,r2,

…,rk和s1,s2,…,sk是非负整数),则

lcm(m,n)=pmax(r1,s1)
1 pmax(r2,s2)

2 …pmax(rk,sk)
k

  【例5-5】 设Z+是正整数集合,证明偏序集(Z+,|)中任意两个元素均存在上确界以及

下确界,其中|是整除关系.
证 (1)先证明lcm(x,y)是{x,y}的上确界.对于任意x,y∈Z+,根据公倍数的定义

知,x|lcm(x,y)且y|lcm(x,y),所以lcm(x,y)是{x,y}的上界.假定z 是{x,y}的上

界,则x|z且y|z,即z是x 与y 的公倍数.根据带余除法知,存在整数q和r使得z=q·

lcm(x,y)+r,0≤r<lcm(x,y).由公倍数的定义知x|r且y|r,即r是x 和y 的非

负公倍数.由lcm(x,y)的定义知r=0,即lcm(x,y)是{x,y}的上确界.
(2)类似地,可证明x 与y 的最大公约数gcd(x,y)是{x,y}的下确界(留作练习).

习题5.1

1.分别讨论下述集合上的整除关系具有何种性质.
(1)整数集Z.
(2)自然数集N.
(3)正整数n 的正因数集Dn.
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2.写出35的所有因数集合及所有正因数集D35.

3.证明:若关于λ的整系数方程anλn+an-1λn-1+…+a1λ+a0=0(n∈Z+)有有理数

根r
s
,其中gcd(r,s)=1,则r|a0 且s|an.

4.证明:若a 为正奇数,则8|a2-1.
5.令m =8,分别求出下述n 除以m 的商和余数.
(1)n =7.
(2)n = -7.
(3)n =58.
(4)n = -49.
6.分别计算以下各式.
(1)2019mod19.
(2)-2019mod19.
7.计算12345的八进制数.
8.分别计算以下各式.
(1)φ(6).
(2)φ(8).
(3)φ(15).
9.证明:存在无限多个素数且它们是可列的.
10.对2015进行素因数分解.
11.计算gcd(2035,2019),并给出贝祖系数s和t,使得gcd(2035,2019)=2035s+2019t.
12.证明:对于任意不全为0的整数m 和n,若存在整数s和t使得gcd(n,m)=ns

+mt,则gcd(s,t)=1.试证明之.
13.证明:若gcd(m,n1)=1且gcd(m,n2)=1,则gcd(m,n1n2)=1.
14.证明:在偏序集(Z+,|)中,任意两个元素均存在下确界,其中|是整除关系.

5.2 模同余关系

5.2.1 模同余关系

  伟大的数学家高斯在18世纪末给出了整数集Z上的模m 同余关系≡m,其中m 是正

整数,其在计算机密码学中有重要应用.
【定义5-8】 设m 是正整数,定义整数集Z上的模m 同余关系(modulomcongruence

relation)≡m 如下:
(x,y)∈≡m 当且仅当m|(x-y)

  之所以称≡m 为模m 同余关系,是因为m|(x-y)当且仅当x 除以m 的余数与y 除以

m 的余数相同,也就是说x≡my 当且仅当x(modm)=y(modm),由此可以看出模m 同余

关系与模m 运算的区别和联系.
注意:x≡my 在数论中常记为x≡y(modm),实际上是x(modm)=y (modm),但
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不要与x=y (modm)混淆.
显然,有下述定理.
【定理5-8】 模m 同余关系是整数集Z上的等价关系,即具有

(1)自反性.对任意x ∈Z,有x ≡x(modm).
(2)对称性.对任意x,y ∈Z,若x ≡y(modm),则y ≡x(modm).
(3)传递性.对任意x,y,z∈Z,若x≡y(modm)且y≡z(modm),则x≡z(modm).
证 (1)对任意x∈Z,由于m|(x-x),所以有(x,x)∈≡m,于是≡m 具有自反性.
(2)对任意x,y∈Z,若(x,y)∈≡m,则m|(x-y),显然有m|-(x-y),即m|(y-

x),于是有(y,x)∈≡m,因此,≡m 具有对称性.
(3)对任意x,y,z∈Z,若(x,y)∈≡m 且(y,z)∈≡m,则m|(x-y)且m|(y-z),从

而m|(x-y)+(y-z),即m|(x-z),所以(x,z)∈≡m,因此,≡m 具有传递性.
根据等价关系定义知,≡m 是Z上的等价关系.
由于模m 同余关系≡m 是 Z上的等价关系,把其等价类称为模m 同余类,其商集

Z/≡m={[0],[1],…,[m-1]}.可以定义商集 Z/≡m 上的加法运算和乘法运算.为了方

便,仅考虑模 m 剩余类 Zm ={0,1,2,…,m-1}上的模 m 算术运算:模 m 加法运

算+m和模m 乘法运算·m.在不引起混淆的情况下,可将这两个运算简称为Zm 上的加法

运算“+”和乘法运算“·”.
对于任意x,y ∈Z,有

x+my=(x+y)(modm)

x·my=(xy)(modm)

  例如,若m=3,3+3(-5)=(-2)(mod3)=1,3·3(-5)=(-15)(mod3)=0.
容易知道,模m 加法运算+m和模m 乘法运算·m是Zm={0,1,2,…,m-1}上的封闭

运算.
【例5-6】 分别写出Z6={0,1,2,3,4,5}关于模6加法运算+6和模6乘法运算·6的运

算表.
解 Z6 关于模6加法运算+6和模6乘法运算·6的运算表分别如表5-1和表5-2

所示.

  表 5-1

+6 0 1 2 3 4 5

0
1
2
3
4
5

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4

  表 5-2

·6 0 1 2 3 4 5

0
1
2
3
4
5

0 0 0 0 0 0
0 1 2 3 4 5
0 2 4 0 2 4
0 3 0 3 0 3
0 4 2 0 4 2
0 5 4 3 2 1

模m 同余关系还具有下述性质.
【定理5-9】 设m 是正整数,则

(1)若a≡b(modm)且c≡d(modm),则a+c≡b+d(modm).
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(2)若a ≡b(modm)且c≡d(modm),则ac≡bd(modm).特别地,

• 对于正整数n,若a ≡b(modm),则an≡bn(modm).
• 对于任意整数c,若a ≡b(modm),则ac≡bc(modm).
证 由于a≡b(modm)且c≡d(modm),所以m|(a-b)且m|(c-d).于是,存

在整数k和l使得a -b=km 且c-d =lm.这时,
(1)(a +c)- (b+d)= (k +l)m,进而a +c≡b+d(modm).
(2)ac= (b+km)(d +lm)=bd + (bl+dk +klm)m,进而ac ≡bd(mod

m).
【例5-7】 求32019的个位数.
解 显然,32019的个位数为32019(mod10).由于34≡1(mod10),而2019=4×504+3,

根据定理5-9(2),有34×504≡1504(mod10)=1(mod10),34×504+3≡1×33(mod10)=
7(mod10),即32019(mod10)=7.故32019的个位数为7.

在用数论知识研究密码学时,经常进行幂模(powermodulo)运算ak(modm).利用模

同余关系的性质,可以得到一些幂模运算结果,如例5-7.其次是考虑利用欧拉定理或费马

小定理做幂模运算.
下面证明欧拉定理(Euler’stheorem).
【定理5-10】(欧拉定理) 若整数a 与正整数m 互素,即gcd(a,m)=1,则aφ(m)≡

1(modm),其中φ 为欧拉函数.
证 令S 是小于或等于m 且与m 互素的正整数组成的集合,于是|S|=φ(m),不妨记

S={r1,r2,…,rφ(m)}.由于gcd(a,m)=1,下面证明S = {ar1(modm),ar2(modm),…
,arφ(m)(modm)}.

一方面,由于gcd(a,m)=1且gcd(ri,m)=1,于是gcd(ari,m)=1(i=1,2,
…,φ(m)),进而{ar1(modm),ar2(modm),…,arφ(m)(modm)}ÍS.

另一方面,ari(modm)≠arj(modm)(i≠j).若ari(modm)=arj(modm),则
m|ari-arj,即m|a(ri-rj).因为gcd(a,m)=1,因而m|ri-rj,进而ri=rj,不
可能.

因此,有S = {ar1(modm),ar2(modm),… ,arφ(m)(modm)}.由此可得,ar1(mod
m)·ar2(modm)·…·arφ(m)(modm)=r1·r2·…·rφ(m),即

ar1·ar2·…·arφ(m)≡r1·r2·…·rφ(m)(modm)

aφ(m)r1·r2·…·rφ(m)≡r1·r2·…·rφ(m)(modm)
由于gcd(ri,m)=1(i=1,2,…,φ(m)),故aφ(m)≡1(modm).

若p 为素数,则φ(p)=p-1.于是,由欧拉定理可得费马小定理(Fermat’slittle
theorem).

【定理5-11】(费马小定理) 设p为素数且整数a与p互素,即gcd(a,p)=1,则ap-1≡
1(modp).

说明:
(1)费马小定理的逆不成立,也就是说存在合数n,即使a 与n 互素,an-1≡1(modn)

仍成立,例 如341 = 11 × 31,而2341-1≡1(mod341),但 这 样 的n[称 为 卡 迈 克 尔

(Carmichael)数]非常少.
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