首页 > 图书中心 >图书详情

输电线路雷电防护

本书为清华大学何金良教授课题组30余年雷电防护技术研究成果及国内外研究工作的系统总结,实现了输电线路雷电防护的“可算”、“可控”和“可视”。

作者:何金良
定价:298
印次:1-1
ISBN:9787302627609
出版日期:2024.04.01
印刷日期:2024.04.24

架空输电线路是电能输送的重要通道,分布广泛,雷击是威胁其安全运行的首要因素。本书全面系统地介绍了输电线路雷电防护技术,着重阐明雷击输电线路时,从雷电下行先导击中线路,雷电流流经线路及杆塔,然后经接地装置入地的全物理过程的放电特性及雷电电磁暂态传播机理,介绍了绝缘子、线路、杆塔、接地装置的电磁暂态分析模型及雷击输电线路的全物理过程计算方法,以及接地装置、绝缘子并联保护间隙、线路避雷器及同塔多回线路不平衡绝缘等防护技术,最后介绍了输电线路雷击故障监测及辨识的**研究动态。全书共分11章,系统反映了作者研究团队三十年来的相关科学研究成果,也涵盖了国内外学者在输电线路雷电防护领域的研究工作及**研究动态。 本书可作为电力行业和其他相关行业的工程技术和设计人员的专业培训教材及工程参考用书,也可作为本科生《电力系统过电压》课程的补充教材。

more >

前言 公元前1500年,殷商甲骨文中出现了“雷”字,在年代稍晚的西周青铜器上发现了“电”字,指的是闪电。古代将雷电奉为保佑一方的神灵,多惩罚暴君及恶人。如我国古代神话中有雷公电母,北欧神话中有战神、农神、雷神三神合一的托尔,日本神话中也有雷神等。再者,雷电被视作权力的象征,希腊神话中众神之主宙斯以闪电作为武器。 有关雷电的最早文字记载出自东汉哲学家王充(27—约97年),他在《论衡》中对雷电进行了描述: “雷者火也。以人中雷而死,即询其身,中火则须发烧焦。”元代末刘基(刘伯温)(1311—1375年)在《刘文正公文集》中讲,“雷何物也?曰雷者,大气之郁而激发也,阴气团于阳,必迫,迫极而迸,迸而声为雷,光为电”。中国古代对雷电的认知只停留在观察自然界,作理性思辨。 雷电直到近代才被科学地认识。关于雷电的大部分科学知识主要是20世纪以来获得的。17世纪欧洲发现了正电和负电。伦敦皇家学会馆长Francis Hauksbee首次将实验室人工产生的电与闪电联系起来,1706年他观察摩擦起电的放电不仅产生电火花,而且产生类似雷鸣的声音,认为其与雷电类似。1752年富兰克林进行了著名的风筝实验,雷电在240m长的缠绕钢丝的麻绳上产生了20cm的电火花,第一次向人们揭示了雷电只不过是一种大气火花放电现象的秘密。富兰克林随后发明了避雷针,想法是从尖端物体容易被雷击产生的。避雷针的发明不仅使人类在生活上免遭自然灾害,而且在哲学上和科学上也是一件大事。从这个时代起,电学的发展由思辨物理学领域进入了对宇宙考虑的阶段,从幽深的书斋走进了大自然。 雷电是雷云积累电荷的释放,可以看作一个功率强大的瞬态电流源沿着一个导电的等离子通道注入地面被击物体,破坏力极强。雷电是威胁人类的重大自然灾害,全球每年发生约14亿次,一次严重雷击事故损失巨大。联合国将雷电列为“最严重的十大自然灾害之一”,美国将其列为“最严重的两大天气灾害”。 远距离大容量输电是解决我国能源与负荷逆向分布、区域电力资源平衡、新能源高效消纳的必然选择。截至2019年年底,我国已建成220kV及以上的架空输电线路75.5×104km,配电线路582×104km。电网遍布各地,极易遭受雷击。据统计,日本50%以上电力系统事故是由雷击输电线路引起的。国际大电网会议统计了美国、苏联等12个国家总长为32700km的275~500kV电压等级输电线路连续三年的运行资料,雷害事故占总事故的60%。我国电网故障分类统计表明,超高压线路雷击事故占线路全部跳闸事故的40%~70%,高居首位。更为严重的是,雷害可引发大面积停电,给社会带来巨大损失。 超特高压线路输送容量巨大,对供电可靠性的要求更高。但超特高压线路工作电压更高,使输电线路导线对雷电下行先导的诱导作用增强,也使得从导线产生的上行先导的随机性增加,导致雷击过程及路径具有复杂性,使雷电绕击成为超特高压线路跳闸的主要原因。同时,特高压及同塔多回线路杆塔高度达到了百米级,改变了局域的雷电活动,使线路走廊的落雷密度增加,加之雷电活动具有复杂性、随机性,并且随着城市的发展,温室效应、热岛效应也会导致雷电活动异常。所有这些因素表明,输电线路雷电防护问题十分艰巨,且日趋迫切。雷电防护技术是大电网及各行业安全乃至公共安全的基石! 我国超特高压电网的建设也促进了防雷技术的发展。高速摄影及记录示波器、雷电定向定位仪、地中放电观测技术等现代化测量技术用于雷电及其效应的观测,野外雷电观测、火箭引雷及长空气间隙人工雷电放电实验研究的进展,不断丰富了人们对于雷电的认识,使人们能够更加科学地模拟雷击输电线路的物理过程。随着对绝缘子的雷电闪络特性、杆塔的雷电冲击特性、线路的冲击电晕特性、接地装置周围土壤的雷电放电效应的认知加深,研究人员提出了基于全波过程的雷电电磁暂态的分析方法,实现了雷电防护的精确分析和设计; 加之绝缘子防雷保护间隙、线路避雷器及雷电监测技术的发展,进一步实现了雷电防护技术的多样化和差异化。到目前为止,我国基本突破了长期制约电力系统雷电防护的雷击机理、计算方法及防护技术等重大技术难题,基本实现了输电线路雷电防护的“可算”“可控”和“可视”。 清华大学电机工程与应用电子技术系吴维韩、张纬钹、高玉明、黄维纲、张芳榴等教授,从1960年开始开展雷电过电压、特别是数值计算方法的研究,为我国电磁暂态数值计算方法的发展和推广做出了重要贡献。为了表彰吴维韩教授在电磁暂态分析等方面的杰出贡献,2022年他被IEEE能源电力学会授予顾毓秀奖。从20世纪90年代开始,清华大学高电压与绝缘技术研究所何金良教授、曾嵘教授、张波教授、胡军教授、 余占清副教授、庄池杰副教授在接地技术、雷电绕击计算方法、绝缘子防雷保护间隙、高性能压敏电阻及线路避雷器、线路雷击故障监测等方面开展了深入的基础理论、计算方法及关键技术的研究,其成果已广泛应用于我国输电线路雷电防护工程,以及世界各国电网防雷工程。何金良教授因此获得IEEE赫尔曼·哈尔普林输配电奖,并与曾嵘教授和张波教授先后获得IEEE电磁兼容学会技术成就奖。 因此,有必要对长期以来取得的输电线路雷电防护基础理论及技术成果做一次系统、全面的总结,以惠及更多的科技工作者和工程技术人员,同时也以此为起点,为更深入的防雷基础理论和核心技术突破打下坚实的基础。本书是多年来清华大学电机工程与应用电子技术系及国内外研究工作的系统总结。清华大学吴维韩教授、高玉明教授、曾嵘教授、张波教授、 胡军教授、余占清副教授、庄池杰副教授,博士后M.Nayel、赵媛,博士生高延庆、康鹏、谷山强、王顺超、杨鹏程、吴锦鹏、李志钊、王希、欧阳勇、赵洪峰、薛芬、肖凤女、陈坤金、韩志飞,硕士生李雨、王辉、张薛巍、董林、嵇士杰、李谦、安建伟等的研究工作为本书的完成做出了贡献,特此感谢。 全书共分为11章,第1章介绍雷电物理及雷击线路特征,第2章介绍输电线路外绝缘雷击闪络特性,第3章介绍输电线路雷电冲击电晕特性,第4章介绍输电线路杆塔雷电冲击响应特性及模拟,第5章介绍输电线路的雷电过电压,第6章介绍输电线路雷电绕击防护,第7章介绍输电线路杆塔接地装置,第8章介绍绝缘子并联保护间隙,第9章介绍线路避雷器,第10章介绍同塔多回输电线路的不平衡绝缘,第11章介绍输电线路雷击故障监测及辨识。 本书由清华大学电机工程与应用电子技术系何金良教授统一规划和主编。曾嵘教授为第1章和第6章提供了资料,张波教授为第3章和第7章提供了资料,余占清副教授为第8章提供了资料,庄池杰副教授、陈坤金博士为第11章提供了资料。作者希望尽可能反映数十年来国内外学者及工程技术人员在输电线路雷电防护领域的研究成果,但难免挂一漏万,希望读者多提宝贵建议和批评指正。在撰写过程中,作者参考了大量的国内外相关论文及书籍,已列入每章的参考文献中,在此对其作者表示诚挚的谢意,但参考文献也难免有疏漏,敬请谅解。 在本书的撰写过程中国内外学者提出了很多宝贵意见。瑞士洛桑联邦理工学院Farhad Rachidi教授审阅了全书,并为本书作序。另外还有很多业界同仁为本书的出版提供了资料及意见,在此一并致以诚挚的谢意。由于作者的理论水平和实际经验有限,书中的疏漏和不足之处敬请读者指正。 何金良 2022年3月于清华园 Preface Electrical power transmission is a very important sector of global energy delivery,which links the energy production centers,still consisting mostly of large power plants,with the consumers. Within this context,lightning constitutes one of the most serious threats to the safety of electrical power transmission. Lightnings importance is set to increase as its level of incidence,characteristics,and intensity are affected by modified weather patterns and as we move to more vulnerable sources of energy,such as wind and solar farms. Current research indicates a correlation between the number of lightning flashes and the temperature. Prof. Jinliang He is a worldrenowned expert in lightning protection. He and his coworkers have done pioneering contributions to lightning protection technologies,especially in the analysis method of the lightning striking process,lightning impulse grounding technology,surge arresters for transmission lines,and the development of advanced sensors for monitoring faults in transmission lines. Extrahigh voltage and ultrahigh voltage (EHV and UHV) overhead transmission lines always suffer serious shielding failure accidents,which happen when a lightning flash strikes phase conductors bypassing the overhead ground wires. Statistical data on EHV transmission lines have revealed that the recorded lightning failure rates were much higher than those estimated by the conventional electrogeometric model (EGM). Prof. He and his coworkers conducted sophisticated highvoltage laboratory experiments to simulate upward leaders from transmissionline conductors and obtained key parameters of upward leaders,including the initial electrical field intensity,extension speed,and electric charge distribution along upward leader channels. Further,the obtained experimental results allowed them to develop a lightning shielding failure analysis method. All these fundamental works have significantly improved our understanding of the lightning striking process to transmission lines,particularly in the case of lightning interaction with power transmission lines,and have made solid contributions to the development of efficient protective measures. The lightning shielding failure analysis method developed by Prof. He and his team for EHV/UHV transmission lines provides an accurate statistical probability of lightning shielding failure of transmission lines,which is of fundamental importance to optimally design the overhead ground wires to reduce lightning shielding failure accidents. The method is an effective tool in simulating the lightningstriking process to buildings as well. A software tool based on his proposed analysis method has been developed and widely used,especially for 1000kV ac,+/-800kV,and +/-1100kV dc UHV transmission lines in China. The shielding failure analysis method has been recommended in the CIGRE Technical Brochure (TB) 704 “Evaluation of lightning shielding analysis methods for EHV/UHV DC and AC transmission lines” prepared by the CIGRE Working Group C4.26 under the leadership of Prof. He. In my opinion,the CIGRE TB 704 constitutes the most comprehensive and uptodate reference for the implementation of advanced methods of lightning shielding analysis for EHV and UHV transmission lines. The impulse characteristics of transmissionline tower grounding systems largely determine the lightning performance of transmission lines under backflashover conditions. Prof. He and his coworkers have significantly contributed to improving our knowledge of the lightning impulse characteristics of grounding systems for transmissionline towers. The lightning impulse characteristics of different grounding systems for transmissionline towers were experimentally obtained. Prof. He has developed a nonlinear transmission line model to simulate the lightning impulse transient characteristics of grounding systems,including ionization phenomena in the soil. He has also proposed simple formulas to calculate the impulse grounding impedance and the effective length of various transmissionline tower grounding systems. The developed model and simple formulas have been recommended in the Chinese National Grounding Standard GB500652012,CIGRE Technical Brochure 543 “Guideline for Numerical Electromagnetic Analysis Method and its Application to Surge Phenomena”,CIGRE Technical Brochure 785 “Electromagnetic computation methods for lightning surge studies with emphasis on the FDTD method”,IEEE Std 1863TM2019 “IEEE Guide for Overhead AC Transmission Line Design”,and Telecommunication Union standard ITUT K.125. Prof. He is one of the pioneers in developing advanced ZnO varistors and polymerichousing surge arresters for lightning protection of transmission lines. He invented advanced commercial ZnO varistors with a high voltage gradient and high energy absorption capability,which are much higher than those of conventional ZnO varistors. The advanced ZnO varistors have been suggested for worldwide application by CIGRE Working Group C4/A3.53,for which Prof. He served as the convenor. He also invented line ZnO surge arresters with polymeric houses and wholesolidinsulation structures for lightning protection of transmission lines installed in parallel with insulators on a transmission line. This new structure not only makes the surge arrester smaller and lighter but also solves the problem of pressure relief,because the design does not leave any air gap inside,therefore eliminating the risk of explosion of surge arresters. The developed line surge arresters are considered to be a very effective lightning protection technology for power transmission lines. More than 300,000 line surge arresters have been deployed in China. Lightning strikes can induce cascading accidents in large power grids. To avoid such effects,efficient monitoring of lightning transients is needed. Prof. He has been a leader in the development of wideband and largerange current sensors based on the tunneling magnetoresistance effect for monitoring lightning transients and lightninginduced faults in power systems. The developed current sensors have been applied to build a wide area distributed sensor network along transmission lines for monitoring lightning accidents. An unsupervised fault identification and classification method based on deep learning were proposed to quickly locate lightninginduced faults. This work has been suggested in CIGRE Working Group C4.61 “Lightning transient sensing,monitoring,and application in electric power systems”,of which professor He is the convenor. Prof. Hes research works have resulted in significant advances in the field of lightning protection of power transmission systems. As a result,Prof. He has gained a worldwide reputation and obtained major international awards and honors. He was elected as Fellow of IEEE in 2008,Fellow of IET in 2011,HPEM Fellow in 2018,and CSEE Fellow in 2020. Prof. He was the recipient of the IEEE Herman Halperin Electric Transmission and Distribution Award presented by the IEEE President,the IEEE's most prestigious honor,and the highest international award in the field of electric power transmission in the world. This award was given to him for his innovative contributions to lightning protection of electric power transmission systems. Other recognitions Prof. He has received include the IEEE Technical Achievement Award from the IEEE EMC Society in 2010,the Hoshino Prize from the Institute of Electrical Installation Engineers of Japan in 2013,the Distinguished Contribution Award from AsiaPacific International Conference on Lightning (APL) in 2015,and the Rudolf Heinrich Golde Award from the International Conference on Lightning Protection (ICLP) in 2016. Due to his outstanding achievements in the field of electric power transmission,he was appointed as a foreign correspondent academician of the Academy of Sciences of the Institute of Bologna,Italy,on October 11th,2022,and became a member of this ancient academic association. The present book “Lightning Protection of Power Transmission Lines” by professor Jinliang presents a comprehensive and systematic analysis of various aspects of lightning protection technologies for transmission lines. The book comprises a logically organized sequence of 11 chapters that are,at the same time,selfcontained and can therefore also be read separately. The book starts with an introductory chapter presenting a general review of lightning physics and its characteristics. The following chapters present various topics related to lightning protection of power transmission lines in a thorough manner,from lightning flashover and corona characteristics,to the lightning impulse response of transmission towers,lightning overvoltages,shielding failure,grounding systems,and protection and monitoring devices and systems. I think that this book represents an extremely useful piece of knowledge for scientific researchers and advanced engineers working in the area of lightning protection. I wholeheartedly wish the author all the editorial success he deserves. Prof. Farhad Rachidi,EPFL,Lausanne,Switzerland

more >
扫描二维码
下载APP了解更多

同系列产品more >

高温气冷堆工艺热应用(英文版)

[德]库尔特·库格勒、张
定 价:468元

查看详情
模块式高温气冷堆核电站

[德]库尔特·库格勒、张
定 价:398元

查看详情
可穿戴式日常行为语义感知及增强方法...

王鹏、杨士强
定 价:59元

查看详情
量子力学的前沿问题(第3版)

张礼 葛墨林
定 价:198元

查看详情
天然石墨的改性与应用

康飞宇
定 价:150元

查看详情
图书分类全部图书
more >
  • 何金良,博士生导师,IEEE Fellow,IET Fellow。2004年国家杰出青年基金获得者。现为清华大学电机系高压研究所所长,清华大学校学术委员会委员。主要从事交直流输变电技术、雷电防护技术及电磁环境及电介质材料等领域的教学和研究工作。在国内外期刊及国际会议上合作发表论文600余篇,获发明专利授权140余项。研究成果获国家技术发明二等奖1项、国家科技进步二等奖2项、世界知识产权组织**发明奖1项、省部级科技进步奖17项,以及IEEE Herman Halperin输配电奖、IEEE技术成就奖、日本Hoshino奖、Rudolf Heinrich Golde奖、CIGRE杰出会员奖、IEEE电力与能源学会杰出讲座学者等国际奖项及荣誉。兼任全国雷电防护标委会主任、中国电机工程学会输电专委会副主任委员、中国电机工程学会高电压专委会副主任委员、电磁干扰专委会委员及变电站电磁环境学组副主任,亚太雷电国际会议执委会主席、国际雷电防护会议科学委员会委员、国际电工委员会TC81(雷电防护)中国代表及七个工作组委员、IEEE电磁兼容学会SETcom委员会秘书长、国际大电网会议C4委员会委员等,Journal of Lightning Research副主编,iEnergy主编,High Voltage、CSEE JPES、高电压技术副主编。

  • 本书全面系统地介绍了输电线路雷电防护技术,着重阐明雷击输电线路时,从雷电下行先导击中线路,雷电流流经线路及杆塔,然后经接地装置入地的全物理过程的放电特性及雷电电磁暂态传播机理,介绍了绝缘子、线路、杆塔、接地装置的电磁暂态分析模型及雷击输电线路的全物理过程计算方法,以及接地装置、绝缘子并联保护间隙、线路避雷器及同塔多回线路不平衡绝缘等防护技术,最后介绍了输电线路雷击故障监测及辨识的**研究动态。全书结构严谨,撰写格式符合规范,语言逻辑性强,并且表述流畅,有很强的可读性。

more >
  • 目录

    第1章雷电物理及雷击线路特征

    1.1雷电放电

    1.1.1雷电放电物理过程

    1.1.2雷电放电的主要阶段

    1.1.3雷电放电类型

    1.1.4多重雷电放电

    1.1.5雷击选择性及雷击定位

    1.2雷电参数

    1.2.1雷电参数研究方法

    1.2.2雷电日和雷电小时

    1.2.3地面落雷密度

    1.2.4雷电流的波形

    1.2.5雷电流的幅值

    1.2.6先导电荷密度

    1.2.7先导发展速度

    1.3雷电放电模型

    1.3.1雷电放电过程模型

    1.3.2雷电主放电模型

    1.3.3雷电先导简化模型

    1.3.4雷电放电产生的电磁场

    1.4输电线路上行先导特性

    1.4.1雷击输电线路观测

    1.4.2雷击输电线路模拟实验

    1.4.3输电线路上行先导的形态

    1.4.4地线对导线上先导特性的影响

    1.4.5地线保护角对导线上先导特性的影响

    1.4.6模拟线路上行先导的主要特征

    参考文献

    第2章输电线路外绝缘雷电闪络特性

    2.1雷击时绝缘子串上作用的波形特征

    2.2绝缘子雷击闪络过程

    2.3外绝缘雷电冲击特性

    2.3.1标准雷电波作用下的线路绝缘强度

    2.3.2短波尾波与标准波的雷电冲击特性比较

    2.4绝缘子的雷电冲击闪络模型

    2.4.1压控开关模型

    2.4.2伏秒特性模型

    2.4.3破坏效应系数模型

    2.4.4绝缘子雷击闪络先导发展模型

    2.5运行绝缘子的雷击闪络统计

    参考文献

    第3章输电线路雷电冲击电晕特性

    3.1雷电冲击电晕特性测试方法

    3.1.1同轴电极实验装置

    3.1.2线板电极实验装置

    3.1....

精彩书评more >

标题

评论

版权所有(C)2023 清华大学出版社有限公司 京ICP备10035462号 京公网安备11010802042911号

联系我们 | 网站地图 | 法律声明 | 友情链接 | 盗版举报 | 人才招聘